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Résumé

Ma thèse est composée de trois chapitres reliés à l’estimation des modèles

espace-état et volatilité stochastique.

Dans le première article ”Simulation Smoothing for State-Space Models : A

Computational Efficiency Analysis”, nous développons une procédure de lissage

de l’état, avec efficacité computationnelle, dans un modèle espace-état linéaire et

gaussien. Nous montrons comment exploiter la structure particulière des modèles

espace-état pour tirer les états latents efficacement. Nous analysons l’efficacité

computationnelle des méthodes basées sur le filtre de Kalman, l’algorithme fac-

teur de Cholesky et notre nouvelle méthode utilisant le compte d’opérations et

d’expériences de calcul. Nous montrons que pour de nombreux cas importants,

notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas

où la dimension des variables observées est grande ou dans les cas où il faut faire

des tirages répétés des états pour les mêmes valeurs de paramètres. Comme appli-

cation, on considère un modèle multivarié de Poisson avec le temps des intensités

variables, lequel est utilisé pour analyser le compte de données des transactions sur

les marchés financières.

Dans le deuxième chapitre ”Multivariate Stochastic Volatility”, nous proposons

une nouvelle technique pour analyser des modèles multivariés à volatilité stochas-

tique. La méthode proposée est basée sur le tirage efficace de la volatilité de son

densité conditionnelle sachant les paramètres et les données. Notre méthodologie

s’applique aux modèles avec plusieurs types de dépendance dans la coupe trans-

versale. Nous pouvons modeler des matrices de corrélation conditionnelles variant

dans le temps en incorporant des facteurs dans l’équation de rendements, où les
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facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons

incorporer des copules pour permettre la dépendance conditionnelle des rende-

ments sachant la volatilité, permettant avoir différent lois marginaux de Student

avec des degrés de liberté spécifiques pour capturer l’hétérogénéité des rendements.

On tire la volatilité comme un bloc dans la dimension du temps et un à la fois

dans la dimension de la coupe transversale. Nous appliquons la méthode introduite

par McCausland (2012) pour obtenir une bonne approximation de la distribution

conditionnelle à posteriori de la volatilité d’un rendement sachant les volatilités

d’autres rendements, les paramètres et les corrélations dynamiques. Le modèle est

évalué en utilisant des données réelles pour dix taux de change. Nous rapportons

des résultats pour des modèles univariés de volatilité stochastique et deux modèles

multivariés.

Dans le troisième chapitre ”The information content of Realized Volatility”,

nous évaluons l’information contribuée par des variations de volatilite réalisée à

l’évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans

erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le

point de vue d’un investisseur pour qui la volatilité est une variable latent inconnu

et la volatilité réalisée est une quantité d’échantillon qui contient des informations

sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par châıne de

Markov pour estimer les modèles, qui permettent la formulation, non seulement

des densités a posteriori de la volatilité, mais aussi les densités prédictives de la

volatilité future. Nous comparons les prévisions de volatilité et les taux de succès

des prévisions qui emploient et n’emploient pas l’information contenue dans la

volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature

empirique en ce sens que ces dernières se limitent le plus souvent à documenter la

capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des

applications empiriques en utilisant les rendements journaliers des indices et de

taux de change. Les différents modèles concurrents sont appliqués à la seconde

moitié de 2008, une période marquante dans la récente crise financière.

Mots-clés : Modèles espace-état, Méthodes de Monte Carlo par châıne de Mar-
kov, Volatilité stochastique, Volatilité réalisée, Compte de données, Données haute
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fréquence.



Abstract

My thesis consists of three chapters related to the estimation of state space

models and stochastic volatility models.

In the first chapter ”Simulation Smoothing for State-Space Models : A Compu-

tational Efficiency Analysis”, we develop a computationally efficient procedure for

state smoothing in Gaussian linear state space models. We show how to exploit the

special structure of state-space models to draw latent states efficiently. We analyze

the computational efficiency of Kalman-filter-based methods, the Cholesky Factor

Algorithm, and our new method using counts of operations and computational ex-

periments. We show that for many important cases, our method is most efficient.

Gains are particularly large for cases where the dimension of observed variables is

large or where one makes repeated draws of states for the same parameter values.

We apply our method to a multivariate Poisson model with time-varying intensities,

which we use to analyze financial market transaction count data.

In the second chapter ”Multivariate Stochastic Volatility”, we propose a new

technique for the analysis of multivariate stochastic volatility models, based on ef-

ficient draws of volatility from its conditional posterior distribution. It applies to

models with several kinds of cross-sectional dependence. Full VAR coefficient and

covariance matrices give cross-sectional volatility dependence. Mean factor struc-

ture allows conditional correlations, given states, to vary in time. The conditional

return distribution features Student’s t marginals, with asset-specific degrees of

freedom, and copulas describing cross-sectional dependence. We draw volatility as

a block in the time dimension and one-at-a-time in the cross-section. Following

McCausland (2012), we use close approximations of the conditional posterior dis-
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tributions of volatility blocks as Metropolis-Hastings proposal distributions. We

illustrate using daily return data for ten currencies. We report results for univa-

riate stochastic volatility models and two multivariate models.

In the third chapter ”The information content of Realized Volatility”, we eva-

luate the information contributed by (variations of) realized volatility to the es-

timation and forecasting of volatility when prices are measured with and without

error using a stochastic volatility model. We consider the viewpoint of an inves-

tor for whom volatility is an unknown latent variable and realized volatility is a

sample quantity which contains information about it. We use Bayesian Markov

Chain Monte Carlo (MCMC) methods to estimate the models, which allow the

formulation of the posterior densities of in-sample volatilities, and the predictive

densities of future volatilities. We then compare the volatility forecasts and hit

rates from predictions that use and do not use the information contained in rea-

lized volatility. This approach is in contrast with most of the empirical realized

volatility literature which most often documents the ability of realized volatility

to forecast itself. Our empirical applications use daily index returns and foreign

exchange during the 2008-2009 financial crisis.

Keywords : State-space models, Markov chain Monte Carlo, Importance sam-
pling, Stochastic volatility, Realized Volatility, Count data, High frequency financial
data.
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de Montréal, Faculté des Études Supérieures de Université de Montréal and Fonds

Québécois de la Recherche sur la Société et la Culture.
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General Introduction

State space models are time series models that relate observable and latent

variables. There are different specifications for a state space model depending on

the specific problem of study. The basic specification considers linear relationships

and Gaussian process. Extensions include non-linear systems and/or non-Gaussian

process. Besides, states can be univariate or multivariate.

State space models are frequently used in finance and macroeconomics. Examples

of popular applications of linear state space models include the estimation of time-

varying parameters, vector autoregressive models and dynamic factor models. Non

linear state space models have been very useful for the estimation of volatility, in

which volatility is modeled as a latent variable that follows a stochastic process.

Models of this kind are called stochastic volatility (SV) models.

Modeling and forecasting volatility is one of the most active areas of research

in finance. Accurate measures and good forecasts of future volatility are critical for

the implementation and evaluation of assets and derivative pricing theories as well

as trading and hedging strategies.

There is an extensive literature concerned with the development of parametric

models to estimate volatility. The main two parametric approaches are GARCH-

type models and stochastic volatility type models. SV models differs from the

GARCH type models in that the conditional volatility is treated as a latent variable

and not a deterministic function of lagged returns. This feature make SV models

more flexible than GARCH-type models. Jacquier, Polson, and Rossi (1994), Kim,

Shephard, and Chib (1998) show that a lot can be gained from the added flexibility

of the SV models over the GARCH models, especially in times of stress (Geweke
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(1994)).

My first and second chapters propose efficient methods for the estimation of

state space models. The first chapter is concerned with linear Gaussian models while

the second chapter studies non-linear and non-Gaussian multivariate state space

models through an application to multivariate stochastic volatility models. The

third chapter evaluates the use of non parametric volatility estimators to improve

the inference and forecasting of the latent volatility using a SV model.

The first chapter is published in Computational Statistics and Data Analysis. In

this chapter we develop a computationally efficient procedure for state smoothing

in Gaussian linear state space models. Simulation smoothing involves drawing state

variables (or innovations) in discrete time state-space models from their conditional

distribution given parameters and observations. Gaussian simulation smoothing is

of particular interest, not only for the direct analysis of Gaussian linear models,

but also for the indirect analysis of more general models.

Several methods for Gaussian simulation smoothing exist, most of which are

based on the Kalman filter. Since states in Gaussian linear state-space models are

Gaussian Markov random fields, it is also possible to apply the Cholesky Factor

Algorithm (CFA) to draw states. This algorithm takes advantage of the band dia-

gonal structure of the Hessian matrix of the log density to make efficient draws.

We show how to exploit the special structure of state-space models to draw latent

states even more efficiently. We analyze the computational efficiency of Kalman-

filter-based methods, the CFA, and our new method using counts of operations

and computational experiments. We show that for many important cases, our me-

thod is most efficient. Gains are particularly large for cases where the dimension

of observed variables is large or where one makes repeated draws of states for the

same parameter values. We apply our method to a multivariate Poisson model

with time-varying intensities, which we use to analyze financial market transaction

count data.

In the second chapter, we propose new Markov Chain Monte Carlo methods for

Bayesian analysis of multivariate stochastic volatility (MSV) models. This approach
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uses a numerically efficient method to draw volatilities as a block in the time

dimension and one-at-a-time in the cross sectional dimension.

By featuring different kinds of dynamic cross-sectional dependence among mul-

tiple asset returns, multivariate volatility models can capture many different styli-

zed facts. We show that our estimation approach is quite flexible, allowing different

specifications and types of dependence. We can specify full first order VAR coef-

ficient and covariance matrices for the evolution of volatilities. We can include

a mean factor structure, which allows conditional return correlations, given asset

and factor volatilities, to vary over time, and for these correlations to covary with

variances. We can also model cross-sectional conditional return dependence given

latent asset and factor volatilities using copulas. Copulas allow one to represent a

multivariate distribution in a very flexible way by decoupling the choice of marginal

distributions — which can be different from each other — from the choice of the

dependence structure. We introduce a new prior for correlation matrices, which we

use in the context of Gaussian copulas. It is based on a geometric interpretation of

correlation coefficients. The prior is a first step towards a model for time varying

correlations where assets are exchangeable, avoiding a problem with models based

on the Cholesky decomposition – their predictions are not invariant to the arbitrary

choice of how to order assets.

We allow heavy-tailed returns. We also depart from the usual assumption of

Gaussian factors and allow Student’s t factors. We applied our methodology to

estimate the volatility of ten currencies. We estimate three models : a model with

independent currencies, each governed by a univariate SV model with Student’s t

innovations, a MSV model with no factors and a MSV model with one factor. We

use comparable priors in the three models and compare the posterior distribution

of parameters, volatilities and correlations across models.

Finally, in the third chapter, we evaluate the use of non parametric estimations

of volatility to improve the quality of inference and forecasting of volatility, which

is considered a latent variable.

Recently the availability of high frequency data has made attractive the use
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of totally non parametric measurements such as the Realized Variance (RV). RV

is the sum of squared high frequency returns over a fixed interval. Under general

conditions RV is a consistent estimator of the integrated variance of the price

process. However, in a realistic setup, RV suffers from measurement errors due to

the presence of jumps and microstructure noise in observed prices. To address this

problem, different methods have been proposed to extract noise and determine the

optimal frequency to use. Estimators are usually evaluated and compared on the

basis of their forecast performance. A popular approach is to use the R-squared of a

Mincer-Zarnowitz style regression, where future integrated variances are regressed

on a constant and the RV estimator. As the integrated volatility is not observed it

is usually replaced by some RV measure. However as RV is an estimated quantity,

there can be error-in-variable problems in the estimation.

We show in a practical way the amount of information that various implemen-

tations of realized volatility can bring to the forecasting of volatility. We consider

the viewpoint of an investor for whom volatility is an unknown latent variable

and realized volatility is a sample quantity which contains information about it.

The investor estimates the standard AR(1) stochastic volatility model by Bayesian

Markov Chain Monte Carlo (MCMC) methods, which allow the formulation of the

posterior densities of in-sample volatilities, and the predictive densities of future

volatilities. We propose and implement two algorithms that the investor can use

to naturally extend her model to incorporate intra-day information in the form

of realized volatility estimates. This allows us to compare directly the volatility

forecasts from predictive and posterior densities that use and do not use the in-

formation contained in realized volatility. A by-product of our algorithms is the

odds ratio in favor of realized volatility. This approach is in contrast with most of

the empirical realized volatility literature which generally documents the ability of

realized volatility to forecast itself.

We present the results of sampling experiments conducted to asses the perfor-

mance of the Bayesian inference on volatilities and parameters and the results of

an empirical application using daily index returns and foreign exchange returns.
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We applied the different competing models to the second half of 2008, period of

stress when getting volatility right or wrong becomes very important. We extend

the framework to incorporate implied volatility, using the VIX index.
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Chapter 1 :

Simulation Smoothing for

State-Space Models : A

Computational Efficiency

Analysis 1

1.1 Introduction

State-space models are time series models featuring both latent and observed

variables. The latent variables have different interpretations according to the ap-

plication. They may be the unobserved states of a system in biology, economics or

engineering. They may be time-varying parameters of a model. They may be fac-

tors in dynamic factor models, capturing covariances among a large set of observed

variables in a parsimonious way.

Gaussian linear state-space models are interesting in their own right, but they

are also useful devices for the analysis of more general state-space models. In some

cases, the model becomes a Gaussian linear state-space model, or a close approxi-

mation, once we condition on certain variables. These variables may be a natural

1. This article was published in Computational Statistics & Data Analysis, Vol. 55, pages No.
199-212, 2011.



8

part of the model, as in Carter and Kohn (1996), or they may be convenient but ar-

tificial devices, as in Kim, Shephard, and Chib (1998), Stroud, Müller, and Polson

(2003) and Frühwirth-Schnatter and Wagner (2006).

In other cases, one can approximate the conditional distribution of states in a

non-Gaussian or non-linear model by its counterpart in a Gaussian linear model. If

the approximation is close enough, one can use the latter for importance sampling,

as Durbin and Koopman (1997) do to compute likelihood functions, or as a proposal

distribution in a Metropolis-Hastings update, as (Shephard and Pitt 1997) do for

posterior Markov chain Monte Carlo simulation.

To fix notation, consider the following Gaussian linear state-space model, ex-

pressed using notation from de Jong and Shephard (1995) :

yt = Xtβ + Ztαt +Gtut, t = 1, . . . , n, (1.1)

αt+1 = Wtβ + Ttαt +Htut, t = 1, . . . , n− 1, (1.2)

α1 ∼ N(a1, P1), ut ∼ i.i.d. N(0, Iq), (1.3)

where yt is a p × 1 vector of dependent variables, αt is a m × 1 vector of state

variables, and β is a k × 1 vector of coefficients. The matrices Xt, Zt, Gt, Wt, Tt

and Ht are known. Equation (1.1) is the measurement equation and equation (2.2)

is the state equation. Let y ≡ (y>1 , . . . , y
>
n )> and α ≡ (α>1 , . . . , α

>
n )>.

We will consider the familiar and important question of simulation smoothing,

which is drawing α as a block from its conditional distribution given y. This is an

important component of various sampling methods for learning about the posterior

distribution of states, parameters and other functions of interest.

Several authors have proposed ways of drawing states in Gaussian linear state-

space models using the Kalman filter, including Carter and Kohn (1994), Frühwirth-

Schnatter (1994), de Jong and Shephard (1995), and Durbin and Koopman (2002).

Rue (2001) introduces the Cholesky Factor Algorithm (CFA), an efficient way
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to draw Gaussian Markov Random Fields (GMRFs) based on the Cholesky decom-

position of the precision (inverse of variance) of the random field. He also recognizes

that the conditional distribution of α given y in Gaussian linear state-space mo-

dels is a special case of a GMRF. Knorr-Held and Rue (2002) comment on the

relationship between the CFA and methods based on the Kalman filter.

Chan and Jeliazkov (2009) describe two empirical applications of the CFA al-

gorithm for Bayesian inference in state-space macroeconomic models. One is a

time-varying parameter vector autoregression model for output growth, unemploy-

ment, income and inflation. The other is a dynamic factor model for U.S. post-war

macroeconomic data.

The Kalman filter is used not only for simulation smoothing, but also to evaluate

the likelihood function for Gaussian linear state-space models. We can do the same

using the CFA and our method. Both give evaluations of f(α|y) for arbitrary α

with little additional computation. We can then evaluate the likelihood as

f(y) =
f(α)f(y|α)

f(α|y)

for any value of α. A convenient choice is the conditional mean of α given y, since

it is easy to obtain and simplifies the computation of f(α|y).

The Kalman filter also delivers intermediate quantities that are useful for com-

puting filtering distributions, the conditional distributions of α1, . . . , αt given y1, . . . , yt,

for various values of t. While it is difficult to use the CFA algorithm to compute

these distributions efficiently, it is fairly straightforward to do so using our method.

We make four main contributions in this paper. The first is a new method, out-

lined in Section 1.2, for drawing states in state-space models. Like the CFA, it uses

the precision and covector (precision times mean) of the conditional distribution of

α given y and does not use the Kalman filter. Unlike the CFA, it generates the condi-

tional means E[αt|αt+1, . . . , αn, y] and conditional variances Var[αt|αt+1, . . . , αn, y]

as a byproduct. These conditional moments turn out to be useful in an extension

of the method, described in McCausland (2012), to non-Gaussian and non-linear
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state-space models with univariate states. This is because it facilitates Gaussian

and other approximations to the conditional distribution of αt given αt+1 and y.

With little additional computation, one can also compute the conditional means

E[αt|y1, . . . , yt] and variances Var[αt|y1, . . . , yt], which together specify the filtering

distributions, useful for sequential learning.

The second main contribution, described in Sections 1.3 and 1.4, is a careful

analysis of the computational efficiency of various methods for drawing states, sho-

wing that the CFA and our new method are much more computationally efficient

than methods based on the Kalman filter when p is large or when repeated draws of

α are required. For the important special case of state-space models, our new me-

thod is up to twice as fast as the CFA for large m. We find examples of applications

with large p in recent work in macroeconomics and forecasting using “data-rich”

environments, where a large number of observed time series is linked to a much

smaller number of latent factors. See for example Boivin and Giannoni (2006),

who estimate Dynamic Stochastic General Equilibrium (DSGE) models, or Stock

and Watson (1999)Stock and Watson (2002) and Forni, Hallin, Lippi, and Reichlin

(2000), who show that factor models with large numbers of variables give better

forecasts than small-scale vector autoregressive (VAR) models do. Examples with

large numbers of repeated draws of α include the evaluation of the likelihood func-

tion in non-linear or non-Gaussian state-space models using importance sampling,

as in Durbin and Koopman (1997).

Our third contribution is to illustrate these simulation smoothing methods using

an empirical application. In Section 1.5, we use them to approximate the likelihood

function for a multivariate Poisson state-space model, using importance sampling.

Latent states govern time-varying intensities. Observed data are transaction counts

in financial markets.

The final contribution is the explicit derivation, in Appendix 1.7.1, of the pre-

cision and covector of the conditional distribution of α given y in Gaussian linear

state-space models. These two objects are the inputs to the CFA and our new

method.
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We conclude in Section 1.6.

1.2 Precision-Based Methods for Simulation Smoo-

thing

In this section we discuss two methods for state smoothing using the precision

Ω and covector c of the conditional distribution of α given y. The first method is

due to Rue (2001), who considers the more general problem of drawing Gaussian

Markov random fields. The second method, introduced here, offers new insights

and more efficient draws for the special case of Gaussian linear state-space models.

Both methods involve pre-computation, which one performs once for a given Ω and

c, and computation that is repeated for each draw.

We will take Ω and c as given here. In Appendix 1.7.1, we show how to compute

Ω and c in terms of Xt, Zt, Gt, Wt, Tt, Ht, a1 and P1, assuming that the stacked

innovation vt ≡ ((Gtut)
>, (Htut)

>)> has full rank.

The full rank condition is frequently, but not always, satisfied and we note that

de Jong and Shephard (1995) and Durbin and Koopman (2002) do not require

this assumption. The full rank conditional is not as restrictive as it may appear,

however, for two reasons pointed out by Rue (2001).

First, we can draw α conditional on the linear equality restriction Aα + b by

drawing α̃ unconditionally and then “conditioning by Kriging” to obtain α. This

gives α = α̃ − Ω−1A>(AΩ−1A>)−1(Aα̃ + b). One can precompute the columns

of Ω−1A> in the same way as we compute µ = Ω−1c in Appendix 1.7.2, then

precompute AΩ−1A> and −Ω−1A>(AΩ−1A>)−1.

Second, state-space models where the innovation has less than full rank are

often more naturally expressed in another form, one that allows application of the

CFA method. Take, for example, a model where a univariate latent variable αt is an

autoregressive process of order p and the measurement equation is given by (1.1).

Such a model can be coerced into state-space form, with a p-dimensional state

vector and an innovation variance of less than full rank. However, the conditional
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distribution of α given y is a GMRF and one can apply the CFA method directly.

Having repeated these points, we acknowledge that the full rank condition is

still quite restrictive. Conditioning by Kriging is costly when A has O(n) rows,

and it seems to us that simulation smoothing in autoregressive moving average

(ARMA) models is impractical using precision based methods.

Rue (2001) introduces a simple procedure for drawing Gaussian random fields.

We suppose α is multivariate normal, with a band-diagonal precision matrix Ω

and covector c. We let N be the length of α and b be the number of non-zero

subdiagonals in Ω. Ω is symmetric, so its bandwidth is 2b+ 1.

Pre-computation consists of computing the Cholesky decomposition Ω = LL>

using an algorithm that exploits the band diagonal structure of Ω and then compu-

ting L−1c using band back-substitution. To draw α ∼ N(Ω−1c,Ω−1), one draws ε ∼
N(0, IN) and then computes α = (L>)−1([L−1c] + ε) using band back-substitution.

Here and elsewhere, we use square brackets to denote previously computed quanti-

ties. The decomposition and back-substitution operations are standard in com-

monly used numerical computation libraries : the LAPACK routine DPBTRF

computes the Cholesky decomposition of band diagonal matrices, and the BLAS

routine DTBSV solves banded triangular systems of equations using band back-

substitution.

Rue (2001) recognizes that the vector of states α in Gaussian linear state-space

models is an example of a Gaussian Markov random fields. In Appendix 1.7.1, we

explicitly derive Ω and c. We note that for the state-space model defined in the

introduction, N = nm and b = 2m− 1.

We now introduce another method (MMP method hereafter) for drawing α

based on the precision Ω and covector c of its conditional distribution given y. It

is based on the following result, proved in Appendix 1.7.2.

Result 1.2.1. If α|y ∼ N(Ω−1c,Ω−1), where Ω has the block band structure of

equation (1.13), then

αt|αt+1, . . . , αn, y ∼ N(mt − ΣtΩt,t+1αt+1,Σt) and E[α|y] = (µ>1 , . . . , µ
>
n )>,
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where

Σ1 = (Ω11)−1, m1 = Σ1c1,

Σt = (Ωtt − Ω>t−1,tΣt−1Ωt−1,t)
−1, mt = Σt(ct − Ω>t−1,tmt−1),

µn = mn, µt = mt − ΣtΩt,t+1µt+1.

The result is related to a Levinson-like algorithm introduced by Vandebril,

Mastronardi, and Van Barel (2007). Their algorithm solves the equation Bx = y,

where B is an n×n symmetric band diagonal matrix and y is a n×1 vector. Result

1.2.1 extends the results in Vandebril, Mastronardi, and Van Barel (2007) in two

ways. First, we modify the algorithm to work with m ×m submatrices of a block

band diagonal matrix rather than individual elements of a band diagonal matrix.

Second, we use intermediate quantities computed while solving the equation Ωµ = c

for µ = E[α|y] in order to compute E[αt|αt+1, . . . , αn, y] and Var[αt|αt+1, . . . , αn, y].

Pre-computation involves iterating the following computations for t = 1, . . . , n :

1. Compute the Cholesky decomposition Σ−1
t = ΛtΛ

>
t , where Σ−1

1 = Ω11 and

Σ−1
t = Ωtt − [Ω>t−1,tΣt−1Ωt−1,t] for t > 1.

2. Compute Λ−1
t Ωt,t+1 using triangular back substitution.

3. Compute the symmetric matrix Ω>t,t+1ΣtΩt,t+1 = [Λ−1
t Ωt,t+1]>[Λ−1

t Ωt,t+1].

4. Computemt using triangular back substitution twice, wherem1 = (Λ>1 )−1(Λ−1
1 c1)

and mt = (Λ>t )−1(Λ−1
t (ct − Ω>t−1,tmt−1)) for t > 1.

To draw α ∼ N(Ω−1c,Ω−1), we proceed backwards. For t = n, . . . , 1,

1. Draw εt ∼ N(0, Im).

2. Compute αt using matrix-vector multiplication and back substitution, where

αn = mn + (Λ>n )−1εn and αt = mt + (Λ>t )−1(εt − [Λ−1
t Ωt,t+1]αt+1) for t < n.

We consider now the problem of computing the filtering distribution at time t,

the conditional distribution of αt given y1, . . . , yt. Since α and y are jointly mul-

tivariate Gaussian, this distribution is also Gaussian and it is enough to compute

the mean E[αt|y1, . . . , yt] and variance Var[αt|y1, . . . , yt]. It turns out we can do

this with very little additional computation.
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Fix t and consider the two cases n = t and n > t. It is easy to see (in Appendix

1.7.1) that for τ = 1, . . . , t − 1, the values of cτ , Ωττ and Ωτ,τ+1 do not differ

betweem cases. Therefore the values of mτ and Στ do not vary from case to case

either. We can use equation (1.14) (for Ωnn, taking n = t) to compute

Ω̃tt ≡ Z>t (GtG
>
t )−1Zt + A22,t−1,

and equation (1.15) (for cn, taking n = t) to compute

c̃t ≡ Z>t (GtG
>
t )−1(yt −Xtβ)− A21,t−1(yt−1 −Xt−1β) + A22,t−1(Wt−1β).

Then

Var[αt|y1, . . . , yt] = Σ̃t ≡ (Ω̃tt − Ω>t−1,tΣt−1Ωt−1,t)
−1

and

E[αt|y1, . . . , yt] = m̃t ≡ Σ̃t(c̃t − Ω>t−1,tmt−1).

1.3 Efficiency Analysis I : Counts of Operations

We compare the computational efficiency of various methods for drawing α|y.

We consider separately the fixed computational cost of pre-computation, which is

incurred only once, no matter how many draws are needed, and the marginal com-

putational cost required for an additional draw. We do this because there are some

applications, such as Bayesian analysis of state-space models using Gibbs sam-

pling, in which only one draw is needed and other applications, such as importance

sampling in non-Gaussian models, where many draws are needed.

We compute the cost of various matrix operations in terms of the number of

floating point multiplications required per observation. All the methods listed in

the introduction have fixed costs that are third order polynomials in p and m. The

methods of Rue (2001), Durbin and Koopman (2002) and the present paper all

have marginal costs that are second order polynomials in p and m. We will ignore
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fixed cost terms of lower order than three and marginal cost terms of lower order

than two. The marginal costs are important only when multiple draws are required.

We take the computational cost of multiplying an N1×N2 matrix by an N2×N3

matrix as N1N2N3 scalar floating-point multiplications. If the result is symmetric

or if one of the matrices is triangular, we divide by two. It is possible to multiply

matrices more efficiently, but the dimensions required before realizing savings are

higher than those usually encountered in state-space models. We take the cost of

the Cholesky decomposition of a full N × N matrix as N3/6 scalar multiplica-

tions, which is the cost using the algorithm in Press, Teukolsky, Vetterling, and

Flannery (1992, p. 97). When the matrix has bandwidth 2b+ 1, the cost is Nb2/2.

Solving a triangular system of N equations using back-substitution requires N2/2

scalar multiplications. When the triangular system has bandwidth b + 1, only Nb

multiplications are required.

1.3.1 Fixed Costs

We first consider the cost of computing the precision Ω and covector c, which

is required for the methods of Rue (2001) and the current paper.

The cost depends on how we specify the variance of vt, the stacked innovation.

The matrices Gt and Ht are more convenient for methods using the Kalman filter,

while the precisions At are most useful for the precision-based methods. We reco-

gnize that it is often easier to specify the innovation distribution in terms of Gt and

Ht rather than At. In most cases, however, the At are diagonal, constant, or take

on one of a small number of values, and so the additional computation required to

obtain the At is negligible.

There is an important case where it is in fact more natural to provide the At.

When linear Gaussian state-space models are used as approximations of non-linear

or non-Gaussian state-space models, the At are typically based on the Hessian

matrix of the log observation density of the latter. See Durbin and Koopman (1997)

and Section 1.5 of the present paper for examples.

In general, calculation of the Ωtt and Ωt,t+1 is computationally demanding. Ho-
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wever, in many cases of interest, At, Zt and Tt are constant, or take on one of a

small number of values. In these cases, the computational burden is a constant,

not depending on n. We do need to compute each ct, but provided that the matrix

expressions in parentheses in the equations following (1.13) can be pre-computed,

this involves matrix-vector multiplications, whose costs are only second order po-

lynomials in p and m.

We now consider the cost of the Kalman filter, which is used in most methods

for simulation smoothing. The computations are as follows :

et = yt − [Xtβ]− Ztat, Dt = ZtPtZ
>
t + [GtG

>
t ],

Kt = (TtPtZ
>
t + [HtG

>
t ])D−1

t , Lt = Tt −KtZt,

at+1 = [Wtβ] + Ttat +Ktet, Pt+1 = [TtPt]L
>
t + [HtH

>
t ] + [HtG

>
t ]Kt

As before, we use square brackets for quantities, such as [TtPt] above, that are

computed in previous steps. Here and elsewhere, we also use them for quantities

such as [HtH
>
t ] that are usually either constant or taking values in a small pre-

computable set.

Table 1.1 lists the matrix-matrix multiplications, Cholesky decompositions, and

solutions of triangular systems required for three high level operations : an itera-

tion of the Kalman filter, the computation of Ω = LL> using standard methods

for band diagonal Ω, and the computation of the Σt and mt of Result 1.2.1. All

simulation smoothing methods we are aware of use one of these high-level opera-

tions. We represent the solution of triangular systems using notation for the inverse

of a triangular matrix, but no actual matrix inversions are performed, as this is

inefficient and less numerically reliable. Table 1.1 also gives the number of scalar

multiplications for each operation as a function of p and m. Terms of less than

third order are omitted, as we ignore matrix-vector multiplications, whose costs

are mere second order monomials in m and p.

There are special cases where the Kalman filter computations are less costly.

In some of these, the elements of Tt and Zt are zero or one, and certain matrix
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Table 1.1 – Scalar multiplications needed for pre-computation.

Method Operation Scalar multiplications
Kalman PtZ

>
t m2p

Zt[PtZ
>
t ] mp2/2

Tt[PtZ
>
t ] m2p

Dt = ΥtΥ
>
t (Cholesky) p3/6

[TtPtZ
>
t +HtG

>
t ](Υ>t )−1Υ−1

t mp2

KtZt m2p
TtPt m3

[TtPt]L
>
t m3

[HtG
>
t ]Kt m2p

CFA Ω = LL> 2m3

MMP (Ωtt − Ω>t−1,tΣt−1Ωt−1,t) = ΛtΛ
>
t (Cholesky) m3/6

Λ−1
t Ωt,t+1 m3/2

Ω>t,t+1ΣtΩt,t+1 = [Λ−1
t Ωt,t+1]>[Λ−1

t Ωt,t+1] m3/2

multiplications do not require any scalar multiplications. In others, certain matrices

are diagonal, reducing the number of multiplications by an order.

The relative efficiency of precision-based methods compared with Kalman filter

based methods depends on various features of the application. We see that the

precision-based methods have no third order monomials involving p. For the MMP

method, the coefficient of the m3 term is 7/6, compared with 2 for the CFA and 2

for the Kalman filter if TtPt is a general matrix multiplication. If Tt is diagonal or

composed of zeros and ones, the coefficient of m3 drops to 1 for the Kalman filter.

1.3.2 Marginal Costs

Compared with the fixed cost of pre-processing, the marginal computational

cost of an additional draw from α|y is negligible for all four methods we consider.

In particular, no matrix-matrix multiplications, matrix inversions, or Cholesky de-

compositions are required. However, when large numbers of these additional draws

are required, this marginal cost becomes important. It is here that the precision-
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based methods are clearly more efficient than those based on the Kalman filter.

We use the methods of Durbin and Koopman (2002) and de Jong and Shephard

(1995) as benchmarks.

Using the modified simulation smoothing algorithm in Section 2.3 of Durbin

and Koopman (2002) (DK hereafter), an additional draw from α|y requires the

following computations. We define εt ≡ Gtut and ηt ≡ Htut, and assume G>t Ht = 0

and Xtβ = 0, recognizing that these assumptions can be easily relaxed. The first

step is forward simulation using equations (6) and (7) in that article.

x1 ∼ N(0, P1), v+
t = Ztxt + ε+t xt+1 = Ttxt −Ktv

+
t + η+

t ,

where ε+t ∼ N(0,Ξt) and η+
t ∼ N(0, Qt). The next step is the backwards recursion

of equation (5) :

rn = 0, rt−1 = [ZtD
−1
t ]v+

t + L>t rt,

and the computation of residuals in equation (4) :

η̂+
t = Qtrt.

A draw η̃ from the conditional distribution of η given y is given by

η̃ = η̂ − η̂+ + η+,

where η̂ is a pre-computed vector. To construct a draw α̃ from the conditional

distribution of α given y, we use

α̃1 = α̂1 − P1r0 + x1, α̃t+1 = Ttα̃t + η̃t,

where α̂1 is pre-computed.

de Jong and Shephard (1995) (DeJS hereafter) draw α|y using the following

steps, given in equation (4) of their paper. First εt is drawn from N(0, σ2Ct), where

the Cholesky factor of σ2Ct can be pre-computed. Then rt is computed using the
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backwards recursion

rt−1 = [Z>t D
−1
t et] + L>t rt − [V >t C

−1
t ]εt.

Next, αt+1 is computed as

αt+1 = [Wtβ] + Ttαt + Ωtrt + εt.

In the MMP approach, we draw, for each observation, a vector εt ∼ N(0, Im)

and compute

αt = mt + (Λ>t )−1(εt − [Λ−1
t Ωt,t+1]αt+1).

The matrix-vector multiplication requires m2 multiplications and the triangular

back-substitution requires m(m − 1)/2 multiplications and m floating point divi-

sions. We can convert the divisions into less costly multiplications if we store the

reciprocals of the diagonal elements of Λt, obtained during the pre-computation of

Λ−1
t Ωt,t+1.

The band back-substitution used by Rue (2001) is quite similar to this. However,

it is a little less efficient if one is using standard band back-substitution algorithms.

These do not take advantage of the special structure of state-space models, for

which Ω has elements equal to zero in its first 2m− 1 subdiagonals.

1.4 Efficiency Analysis II : Computational Expe-

riments

The performance of a simulation smoothing method does not only depend on the

number of floating point multiplications. In this section, we perform computational

experiments with artificial data to illustrate some of the other issues involved. The

experiments reveal that these other issues are important.

One issue is whether the method is coded in a high level interpreted language

such as Matlab or a lower level programming language such as C. Depending on the
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dimension of the problem, the number and depth of loops, and the availability and

efficiency of relevant functions in the interpreted language, the cost of interpreting

commands may dominate or be dominated by the cost of executing commands for

numerical analysis.

Processing resources are also important, particularly the availability of multiple

processor cores and an optimized math library that exploits them.

We use two different state-space models and generate two different artificial

data sets for each one. The first model is a regression model with time-varying

regression parameters. The measurement equation is

yt = xtβt + εt, εt ∼ i.i.d.N(0, σ2
ε ),

where yt is a univariate observed dependent variable, xt is an observed m-vector of

explanatory variables, and βt is an unobserved time-varying m-vector of regression

coefficients. The dynamics of βt are given by the state equation

β1 ∼ N(a,Q1) (βt+1 − βt) ∼ i.i.d.N(0, Q),

and the εt and βt are mutually independent. We generate two artificial data sets

from the model, one with m = 4 and the other with m = 8. In both cases, n = 1000,

a = 0m, Q1 = Im, Q = (0.001)2(1
2
Im + 1

2
ιmι
>
m), and σ2

ε = 0.05. Im is the m-

dimensional identity matrix and ιm is the m-vector with unit elements. We generate

the vector of explanatory variables according to xt1 = 1 and xti ∼ N(0, 1) for

i = 2, . . . ,m.

The second state-space model is a dynamic factor model of the kind used in

“data-rich” environments. The observation and state equations are

yt = Zαt + ut, ut ∼ N(0, D),

α1 = a+ v1, v1 ∼ N(0, Q1),

αt+1 = Tαt + vt, vt ∼ N(0, Q),
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where yt is a p-vector of observable dependant variables, αt is a m-vector of latent

factors, a is a fixed vector, Z and T are fixed coefficient matrices and D, Q1 and

Q are fixed covariance matrices, D being diagonal. The ut and vt are mutually

independent.

For the simulations, we set the following parameter values. We draw the ele-

ments of the factor loading matrix Z independently, with Zij ∼ N(0, (0.001)2) for

i = 1, . . . ,m and j = 1, . . . , p. We set T = 0.9Im. We assign the following values to

the covariance matrices : D = Ip, a = 0m, Q1 = Im, Q = (0.2)2(1
2
Im + 1

2
ιmι
>
m).

We generate two artificial data sets from the dynamic factor model. For the

first, we use m = 4 and p = 10, which are relatively small. For the second, we use

m = 10 and p = 100, more typical of data rich environments. For each artificial

data set we perform simulation smoothing for the following methods :

DeJS-M Method of de Jong and Shephard (1995), implemented in Matlab

CFA-M Cholesky Factor Algorithm of Rue (2001), implemented in Matlab. The

matrix Ω is stored as a sparse matrix and the Cholesky decomposition exploits

the sparse structure.

MMP-M Method introduced in Section 1.2, implemented in Matlab.

CFA-C Cholesky Factor Algorithm, implemented in C. The matrix Ω is stored as

a band triangular matrix according to the convention of LAPACK. We use the

LAPACK routine DPBTRF to compute the Cholesky decomposition of band

diagonal matrices, and the BLAS routine DTBSV for band back-substitution.

MMP-C Method introduced in Section 1.2, implemented in C.

We use Matlab R2009a running on a MacBook Pro with a 2.2 GHz Intel Core

Duo processor running OS X 10.6.1. We measure running times for Matlab code

using the Matlab profiler, and those for C code using the XCode profiler. Results

for the time varying parameter model are shown in Table 1.2. For each method,

we measure the time required for pre-computation and the time required for each

draw. Table 1.3 shows results for the dynamic factor model. Here costs are the total

cost of pre-computation and a single draw. We do not report the marginal cost of

a draw since importance sampling is impractical for higher dimensional models.
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Table 1.2 – Costs in ms, Time Varying Parameter model

Algorithm Pre-computation Draw Pre-computation Draw
m = 4 m = 8 m = 8 m = 8

MMP-M 126.0 28.2 132.7 29.7
MMP-C 1.178 0.812 5.21 1.74
CFA-M 66.6 0.853 87.7 1.65
CFA-C 2.08 0.737 8.36 1.64
DeJS-M 277.6 64.7 299.1 66.6

Table 1.3 – Costs in ms, Dynamic Factor model

Algorithm m = 4, p = 10 m = 10, p = 100
MMP-M 123.3 140.5
MMP-C 1.95 11.07
CFA-M 39.6 79.9
CFA-C 2.81 16.4
DeJS-M 416 1165

Although we report results only for n = 1000, experiments not reported here

suggest that timing is very close to linear in the number of observations n. This is

hardly surprising, given that the numbers of operations required for interpretation

and numerical computation both grow linearly in n.

We see clearly that the cost of interpretation dominates the cost of numerical

computation for low dimensional problems. This gives a clear advantage to the

CFA method, as it does not require loops over t except for the construction of the

Ωtt and Ωt,t+1 and then the sparse matrix Ω.

When MMP and CFA are coded in C, there is no longer an interpretation cost.

Here, we see that the MMP method is faster than the CFA.

Even for compiled code, we see that the relative costs of CFA and MMP do not

exactly correspond to the relative numbers of floating point operations. Experi-

ments not reported here suggest that this is because it is easier to exploit multiple

cores for operations on larger matrices and vectors.
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1.5 An Empirical Application to Count Models

Durbin and Koopman (1997) show how to compute an arbitrarily accurate

evaluation of the likelihood function for a semi-Gaussian state-space model in which

the state evolves according to equation (2.2), but the conditional distribution of

observations given states is given by a general distribution with density (or mass)

function p(y|α). To simplify, we suppress notation for dependence on θ, the vector

of parameters.

The approach is as follows. The likelihood function L(θ) we wish to evaluate is

L(θ) = p(y) =

∫
p(y, α)dα =

∫
p(y|α)p(α)dα. (1.4)

Durbin and Koopman (1997) employ importance sampling to approximate this

integral. The approximating Gaussian model has the same state density p(α), a

Gaussian measurement density g(y|α) and likelihood

Lg(θ) = g(y) =
g(y|α)p(α)

g(α|y)
. (1.5)

Substituting p(α) from (1.5) into (1.4) gives

L(θ) = Lg(θ)

∫
p(y|α)

g(y|α)
g(α|y)dα = Lg(θ)Eg[w(α)], (1.6)

where

w(α) ≡ p(y|α)

g(y|α)
.

One can generate a random sample α(1), . . . , α(Ns) from the density g(α|y) using

any of the methods for drawing states in fully Gaussian models, then compute a

Monte Carlo approximation of L(θ).

The approximating state-space model has the form

yt = µt + Zαt + εt, (1.7)
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where the εt are independent N(0,Ξt) and independent of the state equation inno-

vations. The Gaussian measurement density g(y|α) is chosen such that the Hessian

(with respect to α) of log g(y|α) matches the Hessian of log p(y|α) at α̂, the condi-

tional mode of α given y. Durbin and Koopman (1997) use routine Kalman filtering

and smoothing to find α̂.

1.5.1 Modifications to the Algorithm for Approximating

L(θ)

We propose here three modifications of the Durbin and Koopman (1997) method

for approximating L(θ). The modified method does not involve Kalman filtering.

First, we use the MMP algorithm to draw α from its conditional distribution

given y.

Second, we compute Lg(θ) as the extreme right hand side of equation (1.5). The

equation holds for any value of α ; convenient choices which simplify computations

include the prior mean and the posterior mean. We use the posterior mean.

Finally, we calculate α̂ using Result 1.2.1, as described in the rest of this section.

As in Durbin and Koopman (1997), the method is essentially the Newton method.

The difference lies in the implementation.

We iterate the following steps until convergence.

1. Using the current value of α̂, find the precision ¯̄H and co-vector ¯̄c of a Gaus-

sian approximation to p(α|y) based on a second-order Taylor expansion of

log p(α) + log p(y|α) around the point α̂.

2. Using the current values of ¯̄H and ¯̄c, compute α̂ = ¯̄H−1¯̄c, the mean of the

Gaussian approximation, using Result 1.2.1.

We compute the precision ¯̄H as H̄ + H̃, and the co-vector ¯̄c as c̄+ c̃, where H̄

and c̄ are the precision and co-vector of the marginal distribution of α (detailed

formulations are provided for our example in the next section), and H̃ and c̃ are the

precision and co-vector of the Gaussian density with mean α̂ and variance equal
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to the negative inverse of the Hessian of log p(y|α) at α̂. Since H̃ is block-diagonal

and H̄ is block-band-diagonal, ¯̄H is also block-band-diagonal.

We compute H̃ and c̃ as follows. Let a(αt) ≡ −2 log[p(yt|αt)]. We approximate

a(αt) by ã(αt), consisting of the first three terms of the Taylor expansion of a(αt)

around α̂t :

a(αt) ≈ ã(αt) = a(α̂t) +
∂a(α̂t)

∂αt
(αt − α̂t) +

1

2
(αt − α̂t)>

∂2a(α̂t)

∂αt∂α>t
(αt − α̂t).

If we complete the square, we obtain

ã(αt) = (αt − h−1
t ct)

>ht(αt − h−1
t ct) + k,

where

ht =
1

2

∂2a(α̂t)

∂αt∂α>t
, ct = htα̂t −

1

2

∂a(α̂t)

∂αt
,

and k is an unimportant term not depending on αt. Note that ht and ct are the pre-

cision and co-vector of a multivariate normal distribution with density proportional

to exp[−1
2
ã(αt)].

Since log p(y|α) is additively separable in the elements of α, it means that it is

reasonably well approximated, as a function of α, by
∏n

t=1 exp[−1
2
ã(αt)], which is

proportional to a multivariate normal distribution with precision H̃ and co-vector

c̃, given by

H̃ ≡


h1 0 · · · 0

0 h2 · · · 0
...

...
. . .

...

0 0 · · · hn

 and c̃ ≡


c1

...

cn

 .
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1.5.2 A Multivariate Poisson Model with Time-Varying In-

tensities

As an example of a semi-Gaussian state-space model, let us consider a case

where yt ≡ (yt1, . . . , ytp) is a vector of observed counts. We assume that the yti

are conditionally independent Poisson with intensities λti, so that the conditional

density of yt given λt1, . . . , λtp is

p(yt1, . . . , ytp|λt1, . . . , λtp) =

p∏
i=1

exp(−λti)λytiti
yti!

. (1.8)

The latent count intensities λt1, . . . , λtp are assumed to follow a factor model :

λti = exp

(
m∑
j=1

zijαtj

)
, i = 1, . . . , n, (1.9)

αt+1,j = (1− φj)ᾱj + φjαtj + ηtj, j = 1, . . . ,m, (1.10)

where the ηtj are independent N(0, Qj) and the distribution of α1 is the stationary

distribution, so that the α1,j are independent N(ᾱj, Qj/(1− φ2
j)).

Denote by Q the diagonal matrix diag(Q1, . . . , Qm). The vector of model para-

meters is θ ≡ (ᾱj, φj, Qj, zij)i∈{1,...,p},j∈{1,...,m}. To ensure identification 2, we impose

zii = 1 and zij = 0 for j > i.

We now turn to the problem of estimating the likelihood L(θ) of this particular

semi-Gaussian model using the approach of Durbin and Koopman (1997). For this

2. See for example Heaton and Solo (2004).
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example, the precision H̄ and co-vector c̄, are given by

H̄ =



H̄11 H̄12 0 · · · 0 0

H̄21 H̄22 H̄23 · · · 0 0

0 H̄32 H̄33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · H̄n−1,n−1 H̄n−1,n

0 0 0 · · · H̄n,n−1 H̄nn


, c̄ =



c̄1

c̄2

...

c̄n−1

c̄n


,

where

H̄11 = H̄nn = Q−1,

H̄tt =


(1 + φ2

1)/Q1 · · · 0
...

. . .
...

0 · · · (1 + φ2
m)/Qm

 , t = 2, . . . , n− 1,

H̄t,t+1 = H̄t+1,t =


−φ1/Q1 · · · 0

...
. . .

...

0 · · · −φm/Qm

 , t = 1, . . . , n− 1,

c̄1 = c̄n =


ᾱ1(1− φ1)/Q1

...

ᾱm(1− φm)/Qm

 ,

c̄t =


ᾱ1(1− φ1)2/Q1

...

ᾱm(1− φm)2/Qm

 , t = 2, . . . , n− 1.

We compare the computational efficiency of all three methods for estimating

the likelihood for this semi-Gaussian state-space model. We do so by counting

operations and profiling code. Since a large number of draws from g(α|y) is required

for a good approximation of L(θ), we focus on the marginal computational cost of

an additional draw, the overhead associated with the first draw being small. For
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Table 1.4 – Computational costs per observation per additional draw of αt

Algorithm × N0,1

DeJS (3p2 + p)/2 + 2mp+m2 p
DK (5p2 + p)/2 + 4mp+ 2m+m2 p+m
CFA 2m2 + pm m
MMP (3m2 +m)/2 + pm m

all four methods, we compute α̂ using the fast method presented in Section 1.5.1.

We have already seen how to make an incremental draw using the various

methods. For both MMP and CFA, we add p×mmultiplications for each of the Zαt,

which are required to evaluate p(y|α). The computational costs per observation for

an additional draw of αt are summarized in Table 1.4.

We profile code for all four methods to see how they perform in practice. We

use data from the New York Stock Exchange Trade and Quote database on the

stocks of four gold mining companies : Agnico-Eagle Mines Limited, Barrick Gold

Corporation, Gold Fields Limited and Goldcorp Inc. For each stock, we observe

transaction counts for 195 consecutive two minute intervals covering trading hours

on November 6, 2003. The data are plotted in Figure 1.1.

For the case where the number of factors is equal to the number of series,

that is m = p = 4, and for various values of Ns, Table 1.5 gives the time cost in

100ths of seconds of generating Ns draws of α. All times are averaged over 10,000

replications 3. We report results for two implementations of the MMP and CFA

algorithms, one Matlab only (MMP-M, CFA-M) and a second where precompu-

tation (Cholesky decomposition of Ω for CFA, steps 1 and 2 of MMP) and draws

(band back-substitution for CFA, steps 3 and 4 of MMP) are coded in C (MMP-C,

CFA-C). The implementation of MMP in C gives a better comparison with the

Matlab implementation of CFA that is able to use specialized libraries to compute

the banded Cholesky decomposition and perform the band back-substitution 4.

3. The simulations were performed on a MacBook Pro 2.4 GHz with Matlab R2008b.
4. By declaring Ω to be a sparse matrix, Matlab can use cholmod, a sparse Cholesky factori-

zation package.
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First, we see that for a single draw, DK is slightly faster than DeJS and MMP

(Matlab). For larger numbers of draws, MMP is fastest. Second, these first three

methods are dominated for every value of Ns by the CFA-M algorithm. This is

the result of requiring less operations (compared to DeJS and DK) and being very

efficiently implemented in Matlab. There are no loops over t, which reduces in-

terpretation costs. Third, implementing CFA in C so it uses LAPACK and BLAS

routines for banded triangular matrices and systems is computationally more effi-

cient than Matlab’s built-in functions. Fourth, we see that MMP-C is faster than

CFA-C. As a point of reference, Durbin and Koopman (1997) consider Ns = 200

(combined with antithetic and control variables) as an acceptable value in an em-

pirical example they consider.

Figure 1.1 – Transactions data
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We next discuss the results of the estimation of this multivariate count data
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Table 1.5 – Time cost of drawing α(i) as a function of the number of draws Ns. Figures are in 100ths of seconds.

Method Ns = 1 Ns = 10 Ns = 50 Ns = 150 Ns = 250
DeJS 8.14 8.43 8.89 10.61 11.78
DK 5.56 6.25 7.32 11.01 13.49

MMP-M 5.88 6.12 6.28 6.88 7.47
CFA-M 1.88 1.98 2.16 2.65 3.10
MMP-C 1.11 1.18 1.34 1.90 2.30
CFA-C 1.13 1.21 1.44 2.19 2.73

model. The estimates, standard errors 5 and log-likelihood values are presented in

Table 1.6 for different values of m, the number of latent factors. These results

are obtained with Ns = 500 and antithetic variables. To select a value for m

we cannot use a test statistic such as the likelihood ratio test with the usual χ2

limit distribution. For example, a likelihood ratio test for m = 1 versus m = 2

where we test z32 = z42 = 0 leaves the parameters ᾱ2, φ2 and Q2 unidentified

under the null. An alternative is to use an information criterion such as AIC =

−2 logL(θ)+2 dim(θ) and SIC = −2 logL(θ)+log(pn) dim(θ). See Song and Belin

(2008) for an example. These two criteria both suggest that m should equal four.

For the model with m = 4, we can see that the first factor is the more persistent

with φ̂1 = 0.7710. It is also the factor with the highest innovation variance and the

highest factor loadings, the three largest z’s being z21, z31 and z41.

1.6 Conclusions

In this paper we introduce a new method for drawing state variables in Gaus-

sian state-space models from their conditional distribution given parameters and

observations. The method is quite different from standard methods, such as those of

de Jong and Shephard (1995) and Durbin and Koopman (2002), that use Kalman

filtering. It is much more in the spirit of Rue (2001), who describes an efficient me-

5. See Durbin and Koopman (2001, Chapter 12).
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Table 1.6 – Estimation results for the model for different values of m. The standard errors are between parantheses.

m = 1 m = 2 m = 3 m = 4
ᾱ1 2.0569 (0.0101) 2.0207 (0.0050) 1.9999 (0.0140) 2.0013 (0.0049)
ᾱ2 0.4022 (0.0718) 0.7311 (0.2105) 0.7004 (0.0821)
ᾱ3 0.5360 (0.0218) 0.2939 (0.0184)
ᾱ4 0.3858 (0.0489)
φ1 0.7873 (0.0007) 0.7402 (0.0255) 0.7595 (0.0079) 0.7710 (0.0059)
φ2 0.1780 (0.0549) 0.1233 (0.0353) 0.2829 (0.0144)
φ3 0.0886 (0.0162) 0.0412 (0.0020)
φ4 0.1182 (0.0025)
Q1 0.1582 (0.0019) 0.2225 (0.0207) 0.2250 (0.0041) 0.2142 (0.0077)
Q2 0.0321 (0.0030) 0.1316 (0.0628) 0.1378 (0.0133)
Q3 0.1451 (0.0262) 0.1678 (0.0074)
Q4 0.1405 (0.0120)
z21 0.9928 (0.0064) 0.8170 (0.0358) 0.6626 (0.1000) 0.6714 (0.0388)
z31 0.9965 (0.0065) 0.5830 (0.1243) 0.6449 (0.0380) 0.6738 (0.0242)
z41 0.9882 (0.0065) 0.6073 (0.1192) 0.5785 (0.0148) 0.6098 (0.0359)
z32 2.2228 (0.2558) 0.3012 (0.0665) 0.5203 (0.0078)
z42 2.0586 (0.2555) 0.6674 (0.4069) 0.4394 (0.0247)
z43 0.7747 (0.3121) 0.3856 (0.0105)

logL(θ̂) -2432.71 -2378.44 -2350.67 -2324.22
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thod for drawing Gaussian random vectors with band diagonal precision matrices.

As Rue (2001) recognizes, the distribution α|y in linear Gaussian state-space mo-

dels is an example.

Our first contribution is computing Ω and c for a widely used and fairly flexible

state-space model. These are required inputs for both the CFA of Rue (2001) and

the method we described here.

Our second contribution is a new precision-based state smoothing algorithm.

It is more computationally efficient for the special case of state-space models,

and delivers the conditional means E[αt|αt+1, . . . , αn, y] and conditional variances

Var[αt|αt+1, . . . , αn, y] as a byproduct. These conditional moments turn out to be

very useful in an extension of the method, described in McCausland (2012), to

non-linear and non-Gaussian state-space models with univariate states.

The algorithm is an extention of a Levinson-like algorithm introduced by Van-

debril, Mastronardi, and Van Barel (2007), for solving the equation Bx = y, where

B is an n×n symmetric band diagonal matrix and y is a n×1 vector. The algorithm

extends theirs in two ways. First, we modify the algorithm to work with m × m
submatrices of a block band diagonal matrix rather than individual elements of

a band diagonal matrix. Second, we use intermediate quantities computed while

solving the equation Ωµ = c for the mean µ given the precision Ω and co-vector

c in order to compute the conditional means E[αt|αt+1, . . . , αn, y] and conditional

variances Var[αt|αt+1, . . . , αn, y].

Our third contribution is a computational analysis of several state smoothing

methods. One can often precompute the Ωtt and Ωt,t+1, in which case the precision-

based methods are more efficient than those based on the Kalman filter. The advan-

tage is particularly strong when p is large or when several draws of α are required

for each value of the parameters. Kalman filtering, which involves solving systems

of p equations in p unknowns, requires O(p3) scalar multiplications. If the At can

be pre-computed, or take on only a constant number of values, the precision-based

methods require no operations of higher order than p2, in p. If the Zt and Tt can

also be pre-computed, or take on only a constant number of values, the order drops
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to p. For large m, our method involves half as many scalar multiplications as CFA.

Illustrations with artificial data reveal that performance does not depend only

on the number of floating point multiplications. Whether numerical computations

are implemented in high level interpreted code or low level compiled code is impor-

tant when m and p are small and, consequently, the relative burden of interpreting

code in loops is high. Even when computations are performed in compiled code,

operations on higher dimension vectors and matrices may be relatively more effi-

cient if they can exploit multiple cores.

We consider an applications of our methods to the evaluation of the log-likelihood

function for a multivariate Poisson model with latent count intensities.

We have learned several things relevant to the choice of a simulation smoothing

method for a given state-space model. It is clear that no method dominates the

others in all cases, and that much depends on the details of the state-space model,

its dimensions, whether the user is using a high level language such as Matlab or

a low level language such as C, the number of draws required for each value of the

parameters, and whether or not sequential learning is important.

The two precision-based methods are naturally suited for models with large

values of p, such as those used in data rich environments, or when one needs large

numbers of repeated draws, as when one applies importance sampling for non-linear

or non-Gaussian models. On the other hand, they are not well suited for state-

space models such as ARMA models that cannot be expressed in a form where the

variance of the stacked innovation term has full rank. They may also be less efficient

than methods of de Jong and Shephard (1995) or Durbin and Koopman (2002),

based on Kalman filtering, when the computation of the Ωtt or Ωt,t+1 requires a

number of operations that is third order in m and p. This is the case when Zt or Tt

or the innovation precision At are full matrices taking on different values at every

value of t.

Of the two precision-based methods, the CFA method is best suited for low-

dimensional models implemented in interpreted languages such as Matlab, provided

that the language has routines for efficient Cholesky decomposition and back sub-
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stitution, either for sparse matrices or for banded matrices. The MMP method is

better suited for larger dimensional models. It is for these models that the benefits

of coding in a compiled language are greatest. Once the decision to use a compiled

language is made, the MMP method offers further computational efficiency by avoi-

ding multiplications by zero. The MMP method is also valuable when sequential

learning is required.
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1.7 Appendix to Chapter 1

1.7.1 Derivation of Ω and c

Here we derive expressions for the precision Ω and covector c of the conditional

distribution of α given y, for the Gaussian linear state-space model described in

equations (1.1), (2.2) and (1.3). The matrix Ω and vector c are required inputs for

the CFA method and our new method.

Let vt be the stacked period-t innovation :

vt =

[
Gtut

Htut

]
.

We will assume that the variance of vt has full rank.

We define the matrix At as the precision of vt and then partition it as :

At ≡

[
GtG

>
t GtH

>
t

HtG
>
t HtH

>
t

]−1

=

[
A11,t A12,t

A21,t A22,t

]
,

where A11,t is the leading p× p submatrix.

Clearly α and y are jointly Gaussian and therefore the conditional distribution

of α given y is also Gaussian. We can write the log conditional density of α given

y as

log f(α|y) = −1

2

[
α>Ωα− 2c>α

]
+ k, (1.11)

where k is an unimportant term not depending on α. Using the definition of the

model in equations (1.1), (2.2) and (1.3) we can also write

log f(α|y) = log f(α, y)− log f(y) = −1

2
g(α, y) + k′, (1.12)
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where

g(α, y) = (α1 − a1)>P−1
1 (α1 − a1)

+
n−1∑
t=1

[
yt −Xtβ − Ztαt
αt+1 −Wtβ − Ttαt

]>
At

[
yt −Xtβ − Ztαt
αt+1 −Wtβ − Ttαt

]
+ (yn −Xnβ − Znαn)>(GnG

>
n )−1(yn −Xnβ − Znαn),

and k′ is a term not depending on α.

Matching linear and quadratic terms in the αt between equations (1.11) and

(1.12), we obtain

Ω ≡



Ω11 Ω12 0 . . . 0

Ω>12 Ω22 Ω23
. . .

...

0 Ω>23
. . . . . . 0

...
. . . . . . Ωn−1,n−1 Ωn−1,n

0 . . . 0 Ω>n−1,n Ωnn


c ≡


c1

c2

...

cn

 , (1.13)

where

Ω11 ≡ Z>1 A11,1Z1 + Z>1 A12,1T1 + T>1 A21,1Z1 + T>1 A22,1T1 + P−1
1 ,

Ωtt ≡ Z>t A11,tZt + Z>t A12,tTt + T>t A21,tZt + T>t A22,tTt +A22,t−1, t = 2, . . . , n− 1,

Ωnn ≡ Z>n (GnG
>
n )−1Zn + A22,n−1, (1.14)

Ωt,t+1 ≡ −Z>t A12,t − T>t A22,t, t = 1, . . . , n− 1,

c1 ≡ (Z>1 A11,1 + T>1 A21,1)(y1 −X1β)− (Z>1 A12,1 + T>1 A22,1)(W1β) + P−1
1 a1,

ct ≡ (Z>t A11,t + T>t A21,t)(yt −Xtβ)− (Z>t A12,t + T>t A22,t)(Wtβ)

−A21,t−1(yt−1 −Xt−1β) + A22,t−1(Wt−1β), t = 2, . . . , n− 1,
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cn ≡ Z>n (GnG
>
n )−1(yn −Xnβ)−A21,n−1(yn−1 −Xn−1β) +A22,n−1(Wn−1β). (1.15)

1.7.2 Proof of Result 1.2.1

Suppose α|y ∼ N(Ω−1c,Ω−1) and define

Σ1 = Ω−1
11 , m1 = Σ1c1,

Σt = (Ωtt − Ω>t−1,tΣt−1Ωt−1,t)
−1, mt = Σt(ct − Ω>t−1,tmt−1).

Now let µn ≡ mn and for t = n − 1, . . . , 1, let µt = mt − ΣtΩt,t+1µt+1. Let µ =

(µ>1 , . . . , µ
>
n )>.

We first show that Ωµ = c, which means that µ = E[α|y] :

Ω11µ1 + Ω12µ2 = Ω11(m1 − Σ1Ω12µ2) + Ω12µ2

= Ω11(Ω−1
11 c1 − Ω−1

11 Ω12µ2) + Ω12µ2 = c1.

For t = 2, . . . , n− 1,

Ω>t−1,tµt−1 + Ωttµt + Ωt,t+1µt+1

= Ω>t−1,t(mt−1 − Σt−1Ωt−1,tµt) + Ωttµt + Ωt,t+1µt+1

= Ω>t−1,tmt−1 + (Ωtt − Ω>t−1,tΣt−1Ωt−1,t)µt + Ωt,t+1µt+1

= Ω>t−1,tmt−1 + Σ−1
t µt + Ωt,t+1µt+1

= Ω>t−1,tmt−1 + Σ−1
t (mt − ΣtΩt,t+1µt+1) + Ωt,t+1µt+1

= Ω>t−1,tmt−1 + (ct − Ω>t−1,tmt−1) = ct.



38

Ωn,n−1µn−1 + Ωnnµn = Ωn,n−1(mn−1 − Σn−1Ωn−1,nµn) + Ωnnµn

= Ωn,n−1mn−1 + Σ−1
n µn

= Ωn,n−1mn−1 + Σ−1
n mn

= Ωn,n−1mn−1 + (cn − Ωn,n−1)mn−1 = cn.

We will now prove that E[αt|αt+1, . . . , αn, y] = mt − ΣtΩt,t+1αt+1 and that

Var[αt|αt+1, . . . , αn, y] = Σt. We begin with the standard result

α1:t|αt+1:n, y ∼ N
(
µ1:t − Ω−1

1:t,1:tΩ1:t,t+1:n(αt+1:n − µt+1:n),Ω−1
1:t,1:t

)
,

where µ, α and Ω are partitioned as

µ =

[
µ1:t

µt+1:n

]
, α =

[
α1:t

αt+1:n

]
, Ω =

[
Ω1:t,1:t Ω1:t,t+1:n

Ωt+1:n,1:t Ωt+1:n,t+1:n

]
,

with µ1:t, α1:t and Ω(11) having dimensions tm×1, tm×1, and tm×tm respectively.

Note that the only non-zero elements of Ω(12) come from Ωt,t+1. We can therefore

write the univariate conditional distribution αt|αt+1:n as

αt|αt+1:n ∼ N(µt − (Ω−1
1:t,1:t)ttΩt,t+1(αt+1 − µt+1), (Ω−1

1:t,1:t)tt).

The following inductive proof establishes the result Var[αt|αt+1, . . . , αn, y] = Σt :

(Ω11)−1 = Σ1

(Ω−1
1:t,1:t)tt = (Ωtt − Ωt,1:t−1Ω−1

1:t−1,1:t−1Ω1:t−1,t)
−1

= (Ωtt − Ω>t−1,tΣt−1Ωt−1,t)
−1 = Σt.
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As for the conditional mean,

E[αt|αt+1, . . . , αn, y] =

µt − ΣtΩt,t+1(αt+1 − µt+1) t = 1, . . . , n− 1

µn t = n.

By the definition of µt, mt = µt + ΣtΩt,t+1µt+1, so we obtain

E[αt|αt+1, . . . , αn, y] =

mt − ΣtΩt,t+1αt+1 t = 1, . . . , n− 1

mn t = n.



Chapter 2 :

Multivariate Stochastic Volatility

2.1 Introduction

Multivariate volatility models are a powerful inferential tool. By featuring dif-

ferent kinds of dynamic cross-sectional dependence among multiple asset returns,

they can capture many different stylized facts.

It is well known that asset return volatility varies over time, changing in response

to news and revised expectations of future performance. It tends to cluster, so

that large price changes tend to be followed by other large changes. Volatility is

not independent across markets and assets, and this cross-sectional dependence is

time-varying. Cross-sectional correlations increase substantially in periods of high

market volatility, especially in bear markets. The distribution of returns is heavy

tailed compared with the normal distribution, even when one conditions on current

market conditions. There is an asymmetric relation between price and volatility

changes known as the “leverage effect” : increases in volatility are associated more

with large decreases in price than with large increases.

Multivariate volatility models that can capture these stylized facts are in high

demand in finance given their many important applications, especially in modern

portfolio management. Learning about the joint distribution of asset returns is a

key element for the construction, diversification, evaluation and hedging of portfo-

lios. Accurate estimation of the covariance matrix of multiple asset returns allows
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the investor to timely identify opportunities or risks associated with a particular

portfolio. It is important to track changes in correlations to assess the risk of a

portfolio, especially during periods of market stress. Financial crises usually have

a strong impact on correlation and diversification is least effective at reducing risk

at the very times when risk is highest.

As with univariate volatility models, there are two main types of multivariate

volatility models : observation-driven and parameter-driven. In observation-driven

models, volatility is a deterministic function of observed variables, which allows

straightforward evaluation of the likelihood function. This advantage has made the

observation-driven GARCH model and its extensions very popular for univariate

problems.

In parameter-driven volatility models, known as stochastic volatility (SV) mo-

dels, volatility is a latent stochastic process. Jacquier, Polson, and Rossi (1994)

and Geweke (1994) give evidence suggesting that SV models are more realistic.

They are also more natural discrete time representations of the continuous time

models upon which much of modern finance theory is based. Unfortunately, com-

putation of the likelihood function, which amounts to integrating out latent states,

is difficult. However, since the introduction of Bayesian Markov chain Monte Carlo

(MCMC) methods by Jacquier, Polson, and Rossi (1994) for univariate SV mo-

dels, inference for these models has become much more feasible. These methods

require the evaluation of the joint density of returns, states and parameters, which

is straightforward. In addition, simulation methods for Bayesian inference make

exact finite sample inference possible.

This paper focuses on multivariate stochastic volatility (MSV) models, which

are parameter-driven. For a literature review of multivariate GARCH type models,

which are observation-driven, see Bauwens, Laurent, and Rombouts (2006). We

propose new MCMC methods for Bayesian analysis of MSV models, based on

efficient draws of volatility from its conditional posterior distribution.

There are many different types of MSV models. In Section 2, we describe a MSV

model that encompasses several special cases of interest and compare it to other
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models. Two difficulties arise when we extend volatility models to the multivariate

case. First, the conditional variance of returns given states must be positive defi-

nite at every point in time. Second, there is a severe trade-off between parsimony

and flexibility. As the number of assets increases, the number of potential para-

meters increases quickly, leading to a danger of overfitting. Reining in the number

of parameters forces the modeler to make choices, and much of the difference bet-

ween MSV model specifications reflects a choice about how to do this. This has

implications on which stylized facts can be captured by the model.

We show that our estimation approach is quite flexible and we do not rely much

on any special structure for the MSV model considered. It applies to models with

several kinds of cross-sectional dependence. We can specify full first order VAR

coefficient and covariance matrices for the evolution of volatilities. We can include

a mean factor structure, which allows conditional return correlations, given asset

and factor volatilities, to vary over time, and for these correlations to covary with

variances. We can also model cross-sectional conditional return dependence given

latent asset and factor volatilities using copulas. Copulas allow one to represent a

multivariate distribution in a very flexible way by decoupling the choice of margi-

nal distributions — which can be different from each other — from the choice of

the dependence structure. Copulas have been used in multivariate GARCH-type

models, but to our knowledge, this is the first study to introduce copulas in MSV

models.

We introduce a new prior for correlation matrices, which we use in the context

of Gaussian copulas. It is based on a geometric interpretation of correlation coeffi-

cients. The prior is a first step towards a model for time varying correlations where

assets are exchangeable, avoiding a problem with models based on the Cholesky

decomposition – their predictions are not invariant to the arbitrary choice of how

to order assets.

We allow heavy-tailed returns. In our applications, we use Student’s t margi-

nals, but this is not an essential choice, and we don’t rely on data augmentation

to obtain conditional Gaussianity, unlike with many models using Student’s t dis-
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tributions. In general, we allow the marginal distribution to vary by asset, which

in our applications translates to asset-specific degrees of freedom parameters. We

also depart from the usual assumption of Gaussian factors and allow Student’s t

factors.

Different MCMC methods have been proposed for inference in MSV models

and sometimes they are quite model specific. The estimation technique proposed

by Chib, Nardari, and Shephard (2006) (CNS) is one of the most popular, especially

when analyzing a large number of asset returns. The CNS model includes factors

in mean, heavy tailed errors for returns, and jumps. Factor volatilities and the

volatilities of the idiosyncratic components of returns are conditionally independent

given parameters. Factors are Gaussian.

An important feature of the CNS procedure is sampling the factor loading

matrix and the latent factors as a single block. This is more numerically efficient

than using separate blocks to draw factor loadings and factors. The procedure

exploits the conditional independence of volatilities to draw all volatilities and

some associated parameters as a single block, using the procedure proposed by

Kim, Shephard, and Chib (1998) (KSC) for univariate SV models.

The procedure in Kim, Shephard, and Chib (1998) is an example of the auxiliary

mixture approach to inference in state space models, whereby non-linear or non-

Gaussian state space models are first transformed into linear models and then the

distribution of the transformed error is approximated by a mixture of Gaussian

distributions. The mixture can be dealt with using data augmentation — adding

mixture component indicators yields a linear Gaussian model when one conditions

on them. The transformation is model specific, but many other models have yielded

to this approach. Some relevant articles are Chib, Nardari, and Shephard (2002)

and Omori, Chib, Shephard, and Nakajima (2007) for other univariate SV models ;

Stroud, Müller, and Polson (2003) for Gaussian, but non-linear, state space models

with state dependant variances ; Frühwirth-Schnatter and Wagner (2006) for state

space models with Poisson counts ; and Frühwirth-Schnatter and Frühwirth (2007)

for logit and multinomial logit models.
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The approximation of the transformed error distribution as a mixture can be

corrected by reweighting, as in Kim, Shephard, and Chib (1998) or by an additio-

nal Metropolis accept-reject, as in Stroud, Müller, and Polson (2003), Frühwirth-

Schnatter and Wagner (2006) and Frühwirth-Schnatter and Frühwirth (2007).

CNS draw log volatilities, component indicators and some parameters based on

the approximate transformed model. These Metropolis-Hastings updates preserve

an approximate posterior distribution implied by the approximate model. All other

updates of unknown quantities preserve the exact posterior distribution. Thus the

stationary distribution of a sweep through all the blocks is neither the exact nor the

approximate posterior distribution. We cannot expect the method to be simulation

consistent.

McCausland (2012) proposed an alternative procedure to draw all latent states

in univariate state space models as a block, preserving their exact conditional

posterior distribution. This HESSIAN method is fast and numerically efficient and

does not require data augmentation. It can be used to draw joint blocks of states

and parameters. It is based on a non-Gaussian proposal distribution that captures

some of the departure from Gaussianity of the conditional posterior distribution of

the states. The HESSIAN method uses routines to compute derivatives of the log

measurement density at a point, but is not otherwise model specific.

While the HESSIAN method is only for univariate states, we can apply it to

draw volatilities as a single block in the time dimension but one-at-a-time in the

cross-section dimension. We will see that the conditional distribution of one state

sequence, given the others, parameters and data, can be seen as the conditional

posterior distribution of states in a univariate state space model. So, following

McCausland (2012), we obtain very close approximations to these conditional pos-

terior distributions, which we use as proposal distributions. We are also able to

draw a single volatility sequence, together with some of its associated parame-

ters, as a single block. Because of strong dependence between volatilities and these

parameters, the result is higher numerical efficiency.

To apply the HESSIAN method in this way, we require only that the multiva-
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riate state sequence be a Gaussian first-order vector autoregressive process and that

the conditional distribution of the observed vector depend only on the contempo-

raneous state vector. This requirement is satisfied for a wide variety of state space

models, including but not limited to multivariate stochastic volatility models.

In Section 2.3, we describe in detail our methods for posterior simulation. In

Section 2.4, we validate the correctness of our proposed algorithm using a test of

program correctness similar to that proposed by Geweke (2004). In Section 2.5, we

present an empirical application using a data set of daily returns of foreign exchange

rates and compare the results of different specifications of the MSV model with the

results for univariate SV models. Finally, in Section 2.6, we conclude and outline

some possible extensions.

2.2 The Model

This section describes the most general discrete-time MSV model considered

in this paper, and identifies some special cases of interest. We compare it to other

specifications in the literature. We also describe prior distributions used in our

empirical applications. Table 2.1 describes all of the model’s variables. The notation

is similar to that in Chib, Nardari, and Shephard (2006).

There are p observed return sequences, q factors and m = p + q latent log

volatility states. The conditional distribution of the factor vector ft = (f1t, . . . , fqt)

and the return vector rt = (r1t, . . . , rpt) given the contemporaneous state vector αt

is given by

rt = Bft + V
1/2
t ε1t, ft = D

1/2
t ε2t,

or alternatively

yt =

[
rt

ft

]
=

[
V

1/2
t BD

1/2
t

0 D
1/2
t

]
εt, (2.1)

where B is a p × q factor loading matrix, Vt = diag(exp(α1t), . . . , exp(αpt)) and

Dt = diag(exp(αp+1,t), . . . , exp(αp+q,t)) are matrices of idiosyncratic and factor

volatilities, and εt = (ε>1t, ε
>
2t)
> is an vector of innovations, specified below, in terms
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of parameters ν and R.

Given parameters ᾱ, A and Σ, the state is a Gaussian first order vector auto-

regression, given by

α1 ∼ N(ᾱ,Σ0), αt+1|αt ∼ N((I − A)ᾱ + Aαt,Σ), (2.2)

where the derived parameter Σ0 is chosen to make the state sequence stationary :

vec Σ0 = (Im2 − A⊗ A)−1vec Σ.

See Hamilton (1994, p.265) for details on computing the marginal variance Σ0.

We assume the conditional independence relationships implied by the following

joint density decomposition :

π(ᾱ, A,Σ, ν, B,R, α, f, r) = π(ᾱ, A,Σ, ν, B)π(R)

· π(α1|ᾱ, A,Σ)
n−1∏
t=1

π(αt+1|αt, ᾱ, A,Σ)

·
n∏
t=1

[π(ft|αt)π(rt|B,R, ft, αt)] .

We specify the distribution of εt = (ε1t, . . . , εmt) by providing marginal distribu-

tions, which may differ, and a copula function describing dependence. See Patton

(2009) for an overview of the application of copulas in the modelling of finan-

cial time series and Kolev, dos Anjos, and de M. Mendez (2006) for a survey and

contributions to copula theory.

The marginal distribution of εit is given by the cumulative distribution function

(cdf) Fε(εit|θi). Let π(εit|θi) be its density function. Sklar (1959) provides a theorem

on the relationship between marginal distributions, joint distributions and a copula

function. It states that if F (ε1, . . . , εm) is an m-dimensional cdf with marginals

F1(ε1), . . . , Fm(εm), then there exists a unique copula function C such that F that
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Table 2.1 – Table of symbols

Symbol dimensions description

ᾱ m× 1 mean of state αt
A m×m coefficient matrix for αt
Σ m×m variance of state innovation
B p× q factor loading matrix
ν m× 1 vector of degrees of freedom parameters
R m×m Gaussian copula parameter

εt m× 1 period t return/factor innovation
αt m× 1 period t state

rt p× 1 period t return vector
ft q × 1 period t factor
yt m× 1 (r>t , f

>
t )>

can be written as :

F (ε1, . . . , εm) = C(F1(ε1), . . . , Fm(εm)).

A copula function is a cdf on [0, 1]m with marginal distributions that are uniform on

[0, 1]. Conversely, if ε = (ε1, . . . , εm) is a random vector with cdf F and continuous

marginal cdfs Fi, i = 1, . . . ,m, then the copula of ε, denoted C, is the cdf of

(u1, . . . , um), where ui is the probability integral transform of εi : ui = Fi(εi). The

distribution of the ui is uniform on [0, 1]. Thus

C(u1, . . . , um) = F (F−1
1 (u1), . . . , F−1

m (um)).

In this paper, we assume Student’s t marginals with asset-specific degrees of free-

dom. This allows for fat tails. However, the Student-t cdf could be replaced by

another one and most of the derivations presented below would still hold. We

choose a Gaussian copula with variance matrix

R =

[
R11 0

0 Iq

]
,
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where R11, and thus R, are correlation matrices. One could replace the Gaussian

copula with another, and the derivations below could be modified accordingly.

However, there would be a computational cost. We take advantage of the fact that

the derivatives of a log Gaussian density are non-zero only up to second order.

We denote the Gaussian copula with correlation matrix R as CR :

CR(u1, . . . , um) = ΦR(Φ−1(u1), . . . ,Φ−1(um)).

Here Φ denotes the standard univariate Gaussian cdf and φ, its density. ΦR and

φR denote the cdf and density of the m-variate Gaussian distribution with mean

zero and covariance R. Then the multivariate density of εt is the product of the

Gaussian copula density and the Student-t marginal density functions :

πε(εt|θ) = cR(Fε(ε1t|θ1), . . . , Fε(εmt|θm))
m∏
i=1

π(εit|θi), (2.3)

where

cR(u1, . . . , um) =
∂(m)CR(u1, . . . , um)

∂u1 · · · ∂um
=
φR(Φ−1(u1), . . . ,Φ−1(um))∏m

i=1 φ(Φ−1(ui))
.

Letting xi ≡ Φ−1(ui), i = 1, . . . ,m and x ≡ (x1, . . . , xm), we can write

log cR(u1, . . . , um) = −1

2
(log |R|+ log(2π) + x>(R−1 − I))x. (2.4)

We use the notation πε here instead of the generic π to clarify that it is the density

function of εt. We can now write the conditional density of yt given αt, B, ν and

R as

π(yt|αt, B, ν, R) = πε

([
V
−1/2
t (rt −Bft)
D
−1/2
t ft

]∣∣∣∣∣ ν,R
)

m∏
i=1

exp(−αit/2). (2.5)
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2.2.1 Alternative MSV models

As mentioned before, different MSV model specifications reflect, to a large

extent, different restrictions chosen by the modeller to balance flexibility and par-

simony. In our model, we can impose restrictions on the parameters governing the

marginal distribution of volatility in (2.2), the parameters governing the condi-

tional distribution of returns and factors given volatility, equation (2.1), or both.

These choices have different implications for the stylized facts that a MSV model

can capture.

First let us consider restrictions on the marginal distribution of volatilities. At

one extreme, giving the most flexibility for volatility dynamics, we can specify A

and Σ in equation (2) as full matrices. At another extreme, we can impose prior

independence among log volatilities by specifying diagonal matrices for A and Σ.

This can be much less computationally demanding, which makes it especially at-

tractive when the number of volatilities to estimate is large. Several intermediate

possibilities are possible, including the relatively parsimonious specification in Sec-

tion 3.2.3, where A and Σ are not diagonal, but have O(m) free elements.

We now consider cross-sectional dependence arising from the conditional dis-

tribution of returns given parameters and volatilities, marginal of latent factors.

For comparison purposes, it will be helpful to write out the conditional variance of

returns given returns and factor volatilities :

Var[rt|αt] = V
1/2
t R11V

1/2
t +BDtB

>. (2.6)

In the case where we have no factors, q = 0, then the second term disap-

pears. The conditional variance varies in time, but the conditional correlation R11

is constant. Models with constant correlations have been studied by Harvey, Ruiz,

and Shephard (1994), Danielsson (1998), Smith and Pitts (2006) and So, Li, and

Lam. (1997). Other authors, including Yu and Meyer (2006), Philipov and Glick-

man (2006), Gourieroux (2006), Gourieroux, Jasiak, and Sufana (2004), Carvalho

and West (2006) and Asai and McAleer (2009), consider models in which the re-
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turn innovation correlation is time-varying, which is more realistic. However, as the

number of assets increases, the estimation of a separate time varying correlation

matrix becomes very challenging. Furthermore, when the dynamics of correlation

and volatility are modelled separately, it is difficult to capture the empirical regu-

larity that correlation and volatility covary.

Introducing latent factors in mean is another way to introduce time-varying cor-

relations. Factors in mean models exploit the idea that co-movements of asset re-

turns are driven by a small number of common underlying variables, called factors.

The factors are typically modelled as univariate SV processes. Usually, factor MSV

models give R11 as the identity matrix, in which case Var(rt|αt) = Vt + BDtB
>.

The main attractions of mean factor models is that they are parsimonious, they

lead to time varying conditional correlations and they have a natural link with the

arbitrage pricing theory (APT), an influential theory of asset pricing. APT holds

that the expected return of a financial asset can be modelled as a linear function

of various factors. In addition, the mean factor structure allows the conditional

correlations and conditional variances to covary. This is an important feature for

portfolio analysis, especially when there are turbulent periods. See Longin and

Solnik (2001) and Ang and Chen (2002) for empirical studies showing the positive

correlation of the conditional variances and conditional correlations. Given all these

characteristics, factor MSV models have become very popular in the literature, and

different versions have been proposed. The basic model assumed normal returns,

a constant factor loading matrix and zero factor mean. See, for example, Jacquier,

Polson, and Rossi (1995), Pitt and Shephard (1999) and Aguilar and West (2000).

Other studies proposed some extensions to the basic structure such as jumps in the

return equation and heavy-tailed returns (Chib, Nardari, and Shephard (2006)),

time varying factor loading matrices and regime-switching factors (Lopes and Car-

valho (2007)) or first-order autoregressive factors (Han (2006)). See Chib, Omori,

and Asai (2009) for a brief description and comparison of the different types of MSV

models mentioned. Allowing for heavy tails in the distributions of returns is desi-

rable because empirical evidence has shown that returns present higher conditional
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kurtosis than a Gaussian distribution does.

If we compare these models to the one described at the beginning of this section,

we notice that the MSV model specification that we work with is fairly general and

incorporates some other specifications as special cases. In its most general version,

without parameter restrictions, the model allows for cross-sectional volatility de-

pendence. It allows time-varying conditional correlations through the specification

of a mean factor structure. It also incorporates cross-sectional conditional return

dependence through copulas. The conditional variance matrix of returns in equa-

tion (2.6) is time-varying. The conditional correlation matrix is also time varying,

and covaries with the conditional variances.

We can impose some parameter restrictions and obtain some interesting special

cases :

– Independent states in cross section : A and Σ diagonal.

– Conditionally independent returns given factors and states : R diagonal.

– No factors : q = 0. In this case, the conditional variance-covariance matrix of

returns is given by Var(rt|αt) = V
1/2
t R11V

1/2
t which is still time-varying but

the conditional correlation matrix will be R11 which is constant.

2.2.2 Prior Distributions

Prior for ᾱ, A, Σ, ν, and B

We now describe a prior for a low dimensional specification of ᾱ, A, Σ, ν, and

B.

We parameterize A and Σ in the following parsimonious way :

Σ = (diag(σ))2 +

[
ββT 0

0 0

]
, A = diag(λ) +

[
(1/p)δι>p 0

0 0

]
.

where σ and λ are m × 1 vectors, β and δ are p × 1 vectors and ιp is the p × 1

vector of ones.

We organize the parameters associated with each series i (a return for i =
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1, . . . , p or a factor for i = p+ 1, . . . ,m) as

θi =

(ᾱi, tanh−1(λi), tanh−1(λi + δi), log σi, βi/σi, log νi, Bi1, . . . , Biq)
>, 1 ≤ i ≤ p,

(tanh−1(λi), log σi, log νi)
>, p+ 1 ≤ i ≤ m,

and organize the vector of all these parameters as θ = (θ>1 , . . . , θ
>
m)>.

We suppose that the θi are a priori independent, multivariate normal, and that

the parameters have the prior means and variances given in Table 2.2. For each

Table 2.2 – Parameter means and variances of prior distributions.

Parameter mean variance

ᾱi -11.0 22 = 4
tanh−1(λi) 2.1 (0.25)2 = 0.0625

tanh−1(λi + δi) 2.3 (0.25)2 = 0.0625
log σi -2.0 (0.5)2 = 0.25
βi/σi 0.0 (0.5)2 = 0.25
log νi 3.0 (0.5)2 = 0.25

i = 1, . . . ,m, the correlation coefficient between σi and tanh−1(λi) is -0.8. All other

correlations are zero. The prior probability that the A matrix is such that α is

not stationary is close enough to zero that we have not seen an example in prior

simulations.

Prior for R

We can interpret the correlations in the p×p correlation matrix R as the cosines

of angles between vectors in Rl, where l ≥ p. There are p vectors, one for each asset,

and the
(
p
2

)
angles between distinct vectors give the various correlations.

We reparameterize the information in R. The new parameter is an p× l matrix

V whose rank is p and whose rows have unit Euclidean length. The rows of V give

p points on the surface of the unit l-dimensional hypersphere centred at the origin.

In putting a prior on V, we induce a prior on R = V V >. It is easy to see that

V V > is a p× p symmetric positive definite matrix with unit diagonal elements. In
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other words, it is a full rank correlation matrix. Conversely, for any full correlation

matrix R and any l ≥ p, there is an p × l real matrix V with rows of unit length

and rank p such that V V > = R : take the Cholesky decomposition R = LL> and

let V = [L 0p,l−p].

We choose a prior such that the rows vi of V are independent and identically

distributed. This ensures that the prior does not depend on how the assets are

ordered. We could relax this to exchangeable vi and retain this advantage. This

kind of invariance is difficult to achieve if one specifies a prior on the Cholesky

decomposition of the correlation matrix. A disadvantage of the V parameterization

is that the number of non-zero elements of V is lp, while the number of non-

zero elements of the Cholesky factor is p(p + 1)/2. Another issue is that V is not

identified. However, since V V > is identified, this is not a problem.

We will call the vector (1, 0, ..., 0) in Rl the north pole of the hypersphere. Let

ζi ≡ cos−1(Vi1), the angle between vi and the north pole. We specify a marginal

density π(ζi) and let the conditional distribution vi|ζi be uniform on the set of

points on the surface of the unit hyperphere at an angle of ζi from the north pole.

This set is the surface of an (l − 1) dimensional hypersphere of radius sin ζi.

This gives the following density for vi on the unit l-dimensional hypersphere :

π(vi) = π(ζi)2
π(l−1)/2

Γ( l−1
2

)
sinl−2 ζi.

In our applications, we use ζi/π ∼ Be(4, 4).

2.3 Posterior inference using MCMC

We use MCMC methods to simulate the posterior distribution, with density

π(ᾱ, A,Σ, ν, B,R, α, f |r). We use a multi-block Gibbs sampler. The result is an

ergodic chain whose stationary distribution is the target distribution. The sequence

of steps in a single sweep through the blocks is

1. For i = 1, . . . ,m, update (θi, αi) as described in 2.3.1, preserving the conditio-
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nal posterior distribution θi, αi|θ−i, α−i, R,B−i, f, r, where α−i is the vector

of all state sequences except the i’th and θ−i is the vector of all parameter

values in θ except those in θi.

2. Update (B, f) as described in 2.3.2, preserving the conditional distribution

B, f |θ, α,R, r.

3. Update f as described in 2.3.3, preserving the conditional distribution

f |θ, α,R,B, r.

4. Update R as described in 2.3.4, preserving the conditional distribution

R|θ, α,B, f, r.

In the following subsections, we describe each of these steps.

2.3.1 Draw of θi, αi

We draw (θi, αi) as a single Metropolis-Hastings block. Drawing a volatility

sequence together with its associated parameters in one block is more efficient

than drawing them separately because of their posterior dependence.

Our proposal of (θi, αi) consists of a random walk proposal of θ∗i followed by

a (conditional) independence proposal of α∗i given θ∗i . This gives a joint proposal

that we accept or reject as a unit. The acceptance probability is given by

min

(
1,
π(θ∗i )π(α∗i |θ∗i , θ−i, α−i)π(yt|α∗i , α−i, θ∗i , θ−i, R)

π(θi)π(αi|θ, α−i)π(yt|α, θ, R)
· g(α∗i |θ∗i , θ−i, α−i, R)

g(αi|θ, α−i, R)

)
,

where g(α∗i |θ∗i , θ−i, R) is an independence (it does not depend on αi) conditional

proposal density for α∗i given θ∗i .

A key issue for independence proposals is the specification of the proposal den-

sity. To obtain high numerical efficiency for the draw of a vector with thousands

of observations, we need an extremely close approximation. We will see that the

conditional posterior distribution of αi has the form of the target distributions ap-

proximated in McCausland (2012). These approximations are very close, and we

will exploit them here.
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Draw of θ∗i |θi, α∗−i, ω

We use a random walk Metropolis proposal for θ∗i . The random walk (θ∗i −θi) is

Gaussian with mean zero and covariance matrix Ξ. We obtain Ξ using an adaptive

random walk Metropolis algorithm, described in Vihola (2011), during a burn-in

period — the random walk proposal variance is adjusted after each draw to track a

target acceptance probability. We use the final value of Ξ at the end of the burn-in

period as the proposal covariance matrix for all future draws. Thus our posterior

simulator is a true Markov chain after the burn-in period and so standard MCMC

theory applies to the retained posterior sample.

Draw of α∗i |θ∗i , ω

We now discuss the draw of the conditional proposal α∗i |θ∗i , θ−i, α−i, R using the

HESSIAN method in McCausland (2012).

The HESSIAN method is for simulation smoothing in state space models with

univariate Gaussian states and observable vectors that are not necessarily Gaussian.

It involves a direct independence Metropolis-Hastings update of the entire sequence

of states as a single block. The proposal is a much closer approximation of the

target distribution than is any multivariate Gaussian approximation. The result

is a Metropolis-Hastings update that is not only tractable, but very numerically

efficient. One can also update states jointly with parameters by constructing joint

proposal distributions, as we do here.

Drawing states as a block is much more efficient than one-at-a-time draws in

the usual case where the posterior autocorrelation of states is high. Adding para-

meters to the block leads to even higher numerical efficiency when there is strong

posterior dependence between parameters and states. The HESSIAN method does

not require data augmentation or model transformations, unlike auxiliary mix-

ture sampling methods, where the model is transformed and augmented so that

conditioning on auxiliary variables yields a linear Gaussian state space model.

The auxiliary mixture approach has been used for univariate state space models by

Omori, Chib, Shephard, and Nakajima (2007) and Kim, Shephard, and Chib (1998)
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. Approximating distributions of the transformed model by mixtures of Gaussian

random variables results in slightly incorrect posterior draws. In some cases, this

is corrected using reweighting or an additional accept/reject step. We have seen

that in Chib, Nardari, and Shephard (2006), some blocks update the true posterior

and some blocks update the approximate (mixture approximation) posterior. The

stationary distribution is neither the approximate distribution nor the true distri-

bution, and it is not clear to us how one could compensate for the error. Draws

from the HESSIAN approximate distribution are exact, in the sense that draws of

α∗i are consistent with the evaluation of the proposal density used to compute the

Metropolis-Hastings acceptance probability.

The HESSIAN method uses an approximation g(α|y) of π(α|y) for univariate

models in which α ∼ N(Ω̄−1c̄, Ω̄), with Ω̄ tridiagonal and π(y|α) =
∏n

t=1 π(yt|αt).
One needs to specify Ω̄, the precision, and c̄, the co-vector, and provide routines

to compute the first five derivatives of log π(yt|αt). The approximation g(α|y) is so

close to π(α|y) that we can use it as a proposal distribution to update the entire

sequence α = (α1, . . . , αn) as a block.

Here states are multivariate, but we can draw state sequences one at a time in

the cross-sectional dimension, using approximations of the conditional distribution

of each state sequence αi given the rest of the states (α−i), parameters and data.

The conditional density we need to approximate is

π(αi|α−i, y) ∝ π(αi|α−i)
n∏
t=1

π(yt|αt).

In Appendix 2.7.1, we show that αi|α−i ∼ N((Ω̄(i))−1c̄(i), Ω̄(i)), where the co-

vector c̄(i) is a n × 1 vector and the precision Ω̄(i) is a tridiagonal n × n matrix,

as required by the HESSIAN method. We also describe there how to compute the

elements of Ω̄(i) and c̄(i) in terms of the elements of Ω̄ and c̄.

We just need to compute five derivatives of log π(yt|αit, α−i,t) with respect to

αit. We do not need to write down the complete analytical expressions of these

derivatives, we just need to evaluate them at a point. To do this, we use automatic
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routines to combine derivatives of primitive functions according to Faa di Bruno’s

rule, which is a generalization of the chain rule to higher derivatives. It allows us

to take two vectors of derivative values and call a function that returns a vector

of derivatives of a composite function. Appendix 2.7.2 describes the Faa di Bruno

formula and how we use it to evaluate five derivatives of log π(yt|αit, α−i,t).

2.3.2 Draw of (B, f)

In this block, we update B and f simultaneously in a way that preserves the

posterior distribution of B and f given everything else but does not change the

value of the matrix-vector products Bft. Adding this block improves the posterior

mixing of the poorly identified scale of the B matrix. At the same time, it is fairly

cheap computationally, because the Bft do not change.

We first draw a random q × q matrix Λ. The diagonal elements are iid, with

nΛii ∼ χ2(n), and the non-diagonal elements are zero. With probability 1/2, we

form proposals B∗ = BΛ, f ∗t = Λ−1ft, t = 1, . . . , n and with complementary

probability, we form B∗ = BΛ−1, f ∗t = Λft, t = 1, . . . , n. In the first case, we

accept with probability

min

(
1, |Λ|−(n−p)π(B∗)

∏n
t=1 π(f ∗t |α, ν)

π(B)
∏n

t=1 π(ft|α, ν)

)
,

and in the second case, we accept with probability

min

(
1, |Λ|(n−p)π(B∗)

∏n
t=1 π(f ∗t |α, ν)

π(B)
∏n

t=1 π(ft|α, ν)

)
.

The factors |Λ|−(n−p) and |Λ|(n−p) are products of the Jacobian matrices for the

multiplicative transformations of n vectors ft and p rows of B.
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2.3.3 Draw of f

We draw each ft from its conditional posterior distribution using a random

walk proposal. Because the random walk involves only two function evaluations, it is

quite cheap computationally. We use a proposal variance matrix (2.38)2(B>V −1
t B+

D−1
t )−1. The matrix (B>V −1

t B+D−1
t )−1 is a crude but cheap approximation of the

conditional posterior variance of ft, obtained by setting νi =∞, i = 1, . . . ,m, and

R = I. The scaling factor (2.38)2 comes from Gelman, Roberts, and Gilks (1996),

and it is optimal when the target distribution is univariate Gaussian.

2.3.4 Draw of R

We draw the rows of V one-at-a-time. We use a random walk M-H proposal

to update the row vector vi. It is a random walk on the l-dimensional unit hyper-

sphere : the direction of the walk is uniform and the angle of the walk has some

arbitrary distribution. Let d be the direction vector, normalized so that it has unit

length. To draw the proposal v∗i :

1. Draw the angle ζi between the proposal v∗i and the current state. We use

ζi/π ∼ Be(1, 199).

2. Draw the direction d from the uniform distribution on the unit l-dimensional

hypersphere 6.

3. Compute d⊥, the projection of d onto the hyperplane perpendicular to vi :

d⊥ = d− vid

||vi||2
vi

4. Compute :

v∗i = cos ζi · vi + sin ζi ·
d⊥
||d⊥||

6. We can draw from a uniform distribution on a unit hypersphere by drawing a spherically
symmetric normal random vector of the same dimension, and dividing it by its length.
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5. Accept with probability

min

(
1,
π(f, r|α, θ, B,R∗, f)π(ζ∗i )

π(f, r|α, θ, B,R, f)π(ζi)

ζi
ζ∗i

)
.

2.4 Getting it Right

Here we perform a computational experiment with artificial data to put the

implementation of our methods to the test. We use a simulation strategy similar

to that proposed by Geweke (2004) for testing the correctness of posterior simula-

tors and detecting any analytical and coding errors there may be. This procedure

replaces the common exercise of generating a single artificial data set using known

values of the parameters, applying a simulation method to these data and verifying

that the “true value” falls in a region of high posterior probability.

Like the approach of Geweke (2004), our approach is based on the simulation

of the joint distribution of parameters, states, factors and data. We use a single

simulator, a Gibbs sampler that alternates between updates of the posterior distri-

bution, described in the previous section, and draws of returns given parameters,

states and factors, described in Appendix 2.7.3. If the simulator works correctly,

then the marginal distribution of the parameters must agree with the specified

prior distributions. We can test a wide range of implications of this condition.

This formal approach is a more stringent way to verify the correctness of pos-

terior simulators, as not all errors lead to obviously incorrect results. Reasonable

but incorrect results are worse than obvious errors, because they can mislead. The

test applied here can discriminate much more effectively between correct code and

alternatives with minor coding errors. Also, simulation results often provide clues

to the source of any errors.

Here in detail is how we generate a sample from the joint distribution of ᾱ, A,

Σ, B, ν, R, α, f and r. The first draw (ᾱ(1), A(1),Σ(1), B(1), ν(1), R(1), α(1), f (1), r(1))

comes directly from the model. See Appendix 2.7.3 for a description of how to draw

from π(r|ᾱ, A,Σ, B, ν, R, α, f). Then, we draw subsequent values by iterating the
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following Gibbs blocks :

1. For i = 1, . . . ,m, update θi, αi as described in Section 2.3.1.

2. For t = 1, . . . , n, update ft as described in Section 2.3.3.

3. Update B and (f1, . . . , fn) as described in Section 2.3.2.

4. Update R as described in Section 2.3.4.

5. Update r as described in Appendix 2.7.3.

We obtain a sample {θ(j)
i }Jj=1 of size J = 108 for i = 1, . . . ,m. We construct, for

i = 1, . . . ,m and j = 1, . . . , J the vectors

z(i,j) ≡ L−1
i (θ

(j)
i − µi),

where µi is the prior mean and Li is the lower Cholesky factor of the prior variance

of θi. If the θ
(j)
i are truly multivariate Gaussian with variance LiL

>
i , the elements

of z(i,j) are iid N(0, 1). The vectors z(i,j) have length Ki = 6+q for i = 1, . . . , p and

length Ki = 3 for i = p + 1, . . . ,m. Since the z(i,j), i = 1, . . . ,m, are independent,

we have
∑m

i=1 z
>
i zi ∼ χ2((6 + q)p+ 3q).

We construct the following sample frequencies for quantilesQ = 0.1, 0.3, 0.5, 0.7, 0.9,

return and factor indices i = 1, . . . ,m, and parameter indices k = 1, . . . , Ki

Î
(Q)
ik =

1

J

J∑
j=1

1
(
z

(i,j)
k ≤ Φ−1(Q)

)
,

as well as the sample frequencies

Î
(Q)
0k =

1

J

J∑
j=1

1

(
m∑
i=1

(z(i,j))>z(i,j) ≤ F−1(Q)

)
,

where F is the cdf of the χ2 distribution with (6 + q)p+ 3q degrees of freedom.

Standard results for laws of large numbers and central limit theorems for er-

godic chains apply, so we should observe sample frequencies close to Q. Table 2.3
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shows the sample frequencies Î
(Q)
ik and their estimated numerical errors s

(Q)
ik , obtai-

ned using the method of batch means. We observe that for all cases, the sample

frequencies are very similar to their respectively Q values. This fails to cast doubt

on the correctness of the implementation of the proposed algorithm.

2.5 Empirical Results

In this section we apply our methods to historical exchange rate data. We

describe the data and report estimation results for various models.

2.5.1 Data

We analyze daily returns of 10 currencies relative to the US dollar : the Swiss

Franc (CHF), Euro (EUR), Australian Dollar (AUD), New Zealand Dollar (NZD),

Mexican Peso (MXN), Brazil Real (BRL), British Pound (GBP), Canadian Dollar

(CAD), Japanese Yen (JPY) and Singapore Dollar (SGD). The exchange rates are

the noon spot rate obtained from the Federal Reserve Bank of New York. The

sample covers the period from January 5, 1999 to December 31, 2008. We compute

the log returns of the exchange rates and remove returns for those days when one

or more of the markets was closed, giving 2503 observations for each return series.

Table 2.4 presents some descriptive statistics : annualized mean, annualized

standard deviation, skewness and excess kurtosis. All series present excess kurtosis,

but the magnitude varies from one currency to another, from around 2 for the Euro

to about 27 for the Mexican Peso. Sample volatility varies a lot across currencies,

with the Brazilian Real, and the Australian and New Zealand Dollars being the

most volatile currencies. Although the sample statistics differ substantially across

currencies, we can also observe some commonalities in Figure 2.1. This shows time

plots of the 10 return series and we notice that all returns exhibit their most volatile

episodes at the end of the sample, which corresponds to the financial crisis of 2008.

In Table 2.5 we show the sample correlation matrix for the entire period. Corre-

lation coefficients vary from -0.9 to 0.8. The strongest negative correlation is for the
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Table 2.3 – “Getting it right” sample quantiles
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Table 2.4 – Descriptive statistics of data

Mean Std. Dev. Skewness Excess Kurtosis

CHF -2.56 10.81 -0.30 2.45
EUR 1.45 9.98 0.10 1.90
AUD 1.27 13.45 -0.88 16.66
NZD 0.83 13.40 -0.60 5.75

MXN 3.49 9.48 1.31 26.91
BRL 6.67 19.33 0.45 14.13
GBP -1.19 8.97 -0.29 5.04
CAD -2.22 8.80 -0.20 9.36
JPY -2.05 10.35 -0.36 2.70
SGD -1.44 4.75 -0.19 4.44

pair (EUR,CHF) and the strongest positive correlation is for the pair (AUD,NZD).

The MXN and BRL are the least correlated with the rest of currencies.

Table 2.5 – Sample daily correlation

CHF EUR AUD NZD MXN BRL GBP CAD JPY SGD

CHF 1.00 -0.90 -0.37 -0.37 -0.05 0.01 -0.61 0.31 0.38 0.42
EUR -0.92 1.00 0.52 0.50 -0.07 -0.12 0.70 -0.41 -0.27 -0.47
AUD -0.37 0.52 1.00 0.82 -0.36 -0.32 0.50 -0.57 -0.02 -0.45
NZD -0.37 0.50 0.82 1.00 -0.27 -0.25 0.49 -0.49 -0.03 -0.43

MXN -0.05 -0.07 -0.36 -0.27 1.00 0.48 -0.15 0.30 -0.16 0.16
BRL 0.01 -0.12 -0.32 -0.25 0.48 1.00 -0.16 0.24 -0.09 0.21
GBP -0.61 0.69 0.50 0.49 -0.15 -0.16 1.00 -0.39 -0.16 -0.40
CAD 0.31 -0.41 -0.57 -0.49 0.30 0.24 -0.39 1.00 0.01 0.35
JPY 0.38 -0.27 -0.02 -0.03 -0.16 -0.09 -0.16 0.01 1.00 0.36
SGD 0.42 -0.47 -0.45 -0.43 0.16 0.21 -0.40 0.39 0.36 1.00
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Figure 2.1 – Time plots of daily returns series (in percentage)
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2.5.2 Estimation Results

We estimate three models : a model with independent currencies, each governed

by a univariate SV model with Student’s t innovations (SVt), a MSV model with no

factors (MSV-q0) and a MSV model with one factor (MSV-q1). We use comparable

priors in the three models and compare the posterior distribution of parameters,

volatilities and correlations across models.

Figures 2.2 and 2.3 show posterior densities of the parameters of the volatility

equation across currencies and models. These are computed in R using the default

kernel density estimation method 7. The solid line corresponds to the univariate

SVt model, the dashed line to the MSV-q0 model and the dotted line to the MSV-

q1 model. Tables 2.6 to 2.13 in Appendix 2.7.4 give posterior parameter means,

standard deviations, numerical standard errors (NSE) for the mean, and relative

numerical efficiency (RNE) for the mean. The NSE and RNE are are computed

using the R library coda, using a time series method based on an estimate of the

spectral density at 0. Estimations are based on 45,000 draws after discarding the

first 6,000 draws.

For the SVt model, the A and Σ matrices are diagonal, so that ᾱi, Aii and σii

are the parameters of the i’th univariate SV model, i = 1, . . . , 10. For the MSV-

q0 and MSV-q1 models there are non-zero off-diagonal elements. In the SVt and

MSV-q0 models, the αti, governed by the ᾱ, A and Σ matrices, are the only source

of volatility, while in the MSV-q1 model they give the idiosyncratic volatility, the

part of volatility not attributable to the common factor.

We observe that the posterior density of ᾱi and Aii for the MSV models is

shifted left compared with the univariate SVt models for all the currencies except

MXN and BRL, for which the three posterior densities of ᾱi are very similar 8.

At the same time, the posterior densities of σii are shifted right, relative to the

7. The default algorithm disperses the mass of the empirical distribution function over a regular
grid of at least 512 points and then uses the fast Fourier transform to convolve this approximation
with a discretized version of the kernel and then uses linear approximation to evaluate the density
at the specified points.

8. Aii denotes the AR(1) coefficient in the volatility equation (2).
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Figure 2.2 – Comparison of posterior parameter distributions (Part 1)
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Figure 2.3 – Comparison of posterior parameter distributions (Part 2)
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univariate models 9. With respect to the parameter νi, for half of the currencies the

posterior distribution looks very similar, while for the other half there are some

differences, but without a clear pattern.

Passing from the univariate SVt models to the multivariate MSV-q0 model,

we obtain in most cases a lower mean, lower persistence and higher volatility of

idiosyncratic volatility. The MSV-q0 model allows returns to be conditionally cor-

related but still with currency-specific degrees of freedom. We see that the posterior

mean of the degrees of freedom parameter varies from one currency to another in

line with what we observed in the descriptive statistics.

In the MSV-q1 model, there is both idiosyncratic and factor volatility. Figure

2.4 show a plot of the factor volatility and Table 11 presents the posterior parameter

distribution statistics of the factor volatility equation. In our model the Bft are

identified but not B and the ft separately. The posterior distribution of B is thus

quite sensitive to the priors for B and the parameters of the factors 10. We set ᾱ11 =

0 to normalize the variance of the factor to one. Other normalization strategies

are possible. Note that there are only two parameters to estimate for the factor

volatility equation : A11,11, the persistence parameter, and ν11 the factor volatility’s

degree of freedom. The posterior mean of A11,11 is 0.99, indicating that the factor

volatility is more persistent than the idiosyncratic volatilities. The posterior mean

of ν11 is around 21, which suggest the conditional factor distribution is not much

more fat-tailed than a Gaussian distribution.

We calculate the time varying decomposition of variance into factor and idio-

syncratic components and plot them in Figure 2.5. The solid line correspond to

the factor component and the dashed line to the idiosyncratic component. We see

that the factor is capturing most of the co-movement among the CHF, EUR and

GBP currencies. The factor volatility contribution for CHF and EUR currencies is

9. In the case of the MSV models, σii represents the square root of the diagonal elements
of the variance matrix Σ correspondent to the volatility equation. It measures the volatility of
volatility.

10. Table 12 present the posterior parameter of the elements of the B matrix. The relative
numerical efficiency of these parameters are low but the efficiency is improved for the Bft.
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Figure 2.4 – Time series plot of the posterior mean of the factor volatility of MSV-q1 model
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Factor volatility

more than 80 percent for most of the period and for the GBP is slightly greater

than 50 percent. For the rest of currencies, the idiosyncratic contribution is higher

than the factor, specially for the case of BRL and MXN currencies where the factor

contribution is close to zero. This is consistent with the low correlation between

these two currencies and the rest. Thus, this suggest that the factor can be identi-

fied as an “European” factor, as the CHF, EUR and GBP currencies are the three

European currencies in our sample and the factor seems to capture the shocks that

affect this region.

These results also explain why we see a big move to the left in the posterior

distribution of the ᾱi (mean idiosyncratic log volatility) for CHF, EUR and GBP.

In Figure 2.6 we present the time series plot of the annualized total volatility for

the 10 currencies analyzed obtained with MSV-q0 and MSV-q1.The dashed line

corresponds to MSV-q0 and the solid line to MSV-q1. We see that estimates are

similar across models except for the three currencies with the higher factor contri-

butions, where we notice that for the MSV-q1 model the idiosyncratic volatility
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Figure 2.5 – Time varying decomposition of variance into factor and idiosyncratic components
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has higher mean and is more persistent, compared with the MSV-q0 model.

Figure 2.6 – Comparison of annualized posterior mean of volatility
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We now analyze estimates of correlations between currencies, across models.

As we have discussed in previous sections, the MSV-q0 model, with no factors,

implies a time varying variance matrix, but a time invariant correlation matrix ;

while the MSV model with factors implies that both the variance and the correla-

tion matrices of returns are time-varying. Tables 2.14 and 2.15 in Appendix 2.7.4

show the posterior mean of the R11 matrix for MSV-q0 and MSV-q1, respectively.

In the case of MSV-q0, R11 is the conditional correlation matrix of the returns,

Corr(rt|αt). For the MSV-q1 model, we show in Table 2.16 the average across the

time dimension of the posterior mean of the corresponding Corr(rt|αt) matrix. If

we compare these results with those of MSV-q0 and the sample correlation matrix

showed in Table 2.5 we can see that the estimate of the correlation matrix for the

MSV-q1 model is closer to the corresponding sample correlation matrix. The esti-

mated conditional correlation matrix for the MSV-q0 model agrees with respect to

sign but the magnitudes of the correlation estimates are much smaller.

2.6 Conclusions

We have introduced a new approach for estimating multivariate stochastic vola-

tility models. This approach uses a numerically efficient method to draw volatilities

as a block in the time dimension and one-at-a-time in the cross sectional dimen-

sion. The proposed algorithm is flexible, allowing different specifications and types

of dependence. We can model time-varying conditional correlation matrices by in-

corporating factors in the return equation, where the factors are independent SV

processes with Student’s t innovations. Furthermore, we can incorporate copulas to

allow conditional return dependence given volatility, allowing different Student’s t

marginals to capture return heterogeneity. We have tested the correctness of our

implementation of the proposed method using procedures similar to those suggested

by Geweke (1994).

We apply the proposed method to an exchange rate data set and compare pos-

terior distributions of parameters and volatility with those obtained with univariate
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SV models with Student’s t innovations. We estimate two multivariate models, one

in which we do not include factors and another in which we introduce one factor.

We find that for most of the currencies, the multivariate approach with no factors

gives a lower mean, lower persistence and higher volatility of volatility than the

univariate model. The factor in the factor multivariate model seems to be a kind

of “European” factor, as it is mainly capturing co-movement of three European

currencies. The factor volatility is more persistent than the idiosyncratic volatili-

ties. It would be interesting to introduce additional factors to see if we can capture

other co-movements.

Applying the HESSIAN method one-at-a-time in the cross section only requires

that the multivariate state sequence be a Gaussian first-order vector autoregressive

process and that the conditional distribution of the observed vector depend only on

the contemporaneous state vector. This requirement is satisfied for a wide variety

of state space models, including but not limited to multivariate stochastic volatility

models.

Using the HESSIAN method overcomes two disadvantages of the auxiliary mix-

ture approach. First, it is less model specific — it does not require the researcher

to find a suitable transformation for the model at hand. Second, it is exact —

we do not need to correct for mixture approximation, using reweighting or addi-

tional Metropolis-Hastings steps, or settle for simulators that are not simulation

consistent.

We hope to extend this work to compute marginal likelihoods and to compare

the results from different specifications. Also, we hope to extend the model to

incorporate leverage effects.
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2.7 Appendix to Chapter 2

2.7.1 Computing Ω̄(i) and c̄(i)

We show here how to compute Ω̄(i) and c̄(i), the conditional precision and co-

vector of the conditionally Gaussian distribution αi|α−i. We start by defining Ω̄

and c̄, the prior precision and covector of α. The precision Ω̄ is a nm × nm block

band-diagonal matrix. We will use the notation Ω̄st, s, t = 1, . . . , n, to denote the

m × m submatrix starting at row (s − 1)m + 1 and column (t − 1)m + 1. The

non-zero submatrices are the diagonal blocks Ω̄tt and the off-diagonal blocks Ω̄t,t+1

and Ω̄t−1,t, given by

Ω̄tt = Σ−1 + A>Σ−1A, t = 2, . . . , n− 1, (2.7)

Ω̄11 = Σ−1
0 + A>Σ−1A,

Ω̄nn = Σ−1,

Ω̄t,t+1 = −A>Σ−1, t = 1, . . . , n− 1,

Ω̄t−1,t = −Σ−1A, t = 1, . . . , n− 1.

The co-vector is a nm× 1 vector stacking n m× 1 subvectors c̄t, given by :

c̄t = Σ−1(I − A)ᾱ− A>Σ−1(I − A)ᾱ, t = 2, . . . , n− 1 (2.8)

c̄1 = Σ−1
0 ᾱ− A>Σ−1(I − A)ᾱ,

c̄n = Σ−1(I − A)ᾱ.

We now derive the n×n precision Ω̄(i) and n×1 co-vector c̄(i) of the conditional

distribution αi|α−i. We know that the conditional density π(αi|α−i) is proportio-

nal to the joint density π(α). Matching coefficients of the first- and second-order

monomial terms of log π(αi|α−i) gives the non-zero elements

Ω̄
(i)
tt = (Ω̄tt)ii, Ω̄

(i)
t,t+1 = Ω̄

(i)
t+1,t = (Ω̄t,t+1)ii.
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c̄
(i)
t = (c̄t)i −

∑
j 6=i

[
(Ω̄tt)jiαtj + (Ω̄t,t+1)jiαt+1,j + (Ω̄t−1,t)jiαt−1,j

]
.
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2.7.2 Computing log π(yt|αt, ν, B,R) and its derivatives with

respect to αit

Using equations (2.3), (2.4), and (2.5), we can write log π(yt|αt, B, ν, R) in the

following way :

log π(yt|αt, ν, B,R) =− 1

2

{
log |R|+ log 2π + x>t (R−1 − I)xt

}
− 1

2

{
m∑
i=1

[
αit + (νi + 1) log

(
1 +

ε2it
νi

)]}

+
m∑
i=1

[
log Γ

(
νi + 1

2

)
− log Γ

(νi
2

)
− 1

2
log(νiπ)

]
,

where xt = (x1t, . . . , xmt) and for i = 1, . . . ,m,

xit = Φ−1(uit), uit = Fε(εit|νi)),

εit =

exp(−αit/2)(rit −
∑q

j=1Bijfjt), i = 1, . . . , p,

exp(−αit/2)fi−p,t, i = p+ 1, . . . ,m.

We can evaluate log π(yt|αt, B, ν, R) as a function of αit bottom up, evaluating the

εit at αit, then the uit at εit, then the xit at uit then log π(yt|αt, B, ν, R) at εt and

xt.

We require five derivatives of log π(yt|αt, B, ν, R) with respect to αit, evaluated

at αit. Because it is a multi-level compound function of the αit, computing these

derivatives in closed form would be extremely tedious and prone to error. Fortu-

nately, we do not need to. Instead, we compute any values we need, bottom up,

using Faà di Bruno’s formula (2.7.2 below) at each step to compute derivatives of

a compound function by combining derivatives of its component functions.

We proceed using the following steps.

1. Compute five derivatives of ψ(αit) ≡ log πε(e
−αit/2ηit|θi) with respect to αit

at αit, as described in 2.7.2.
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2. Compute five derivatives of x>(R−1 − I)x with respect to xit at xit, as des-

cribed in 2.7.2.

3. Compute five derivatives of xit with respect to uit at uit, as described in 2.7.2.

4. Compute five derivatives of uit with respect to αit at αit, as described in 2.7.2.

5. Use the Faà di Bruno formula, described in 2.7.2, to compute five derivatives

of xit with respect to αit at αit. Inputs are the derivatives of xit with respect

to uit at step 3 and the derivatives of uit with respect to αit at step 4.

6. Use the Faà di Bruno formula to compute five derivatives of x>(R−1 − I)x

with respect to αit at αit. Inputs are the derivatives of x>(R−1 − I)x with

respect to xit at step 2 and the derivatives of xit with respect to αit at step

5.

7. Compute five derivatives of log π(yt|αt, θ, B,R) with respect to αit at αit

directly using the derivatives at steps 1 and 6.

For convenience, we define

ηt =


η1t

...

ηmt

 =

[
rt −Bft

ft

]
,
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Derivatives of ψ(αit) with respect to αit

For the special case of Student’s t F,

πε(e
−αit/2ηit|vi) =

Γ(νi+1
2

)
√
νiπΓ(νi

2
)

(
1 +

e−αitη2
it

νi

)− νi+1

2

ψ(αit) = log

[
Γ(νi+1

2
)

√
νiπΓ(νi

2
)

]
− νi + 1

2
log(1 + sit)

where sit ≡ e−αitη2
it/νi. Noting that ∂sit/∂αi = −sit, we compute

ψ′(αit) =
νi + 1

2

sit
1 + sit

, ψ′′(αit) = −νi + 1

2

sit
(1 + s2

it)
,

ψ′′′(αit) =
νi + 1

2

sit(1− sit)
(1 + sit)3

, ψ(4)(αit) = −νi + 1

2

sit(1− 4sit + s2
it)

(1 + sit)4
,

ψ(5)(αit) =
νi + 1

2

sit(1− 11sit + 11s2
it − s3

it)

(1 + sit)5
.
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Derivatives of x>(I −R−1)x with respect to xit

In this section we show how to compute partial derivatives of log c(u1, . . . , um)

with respect to the ui. We can write

log cR(u1, . . . , um) = log φR(Φ−1(u1), . . . ,Φ−1(um))−
m∑
i=1

log φ(Φ−1(ui))

=
1

2
|H|+ 1

2
x>(I −R−1)x,

where x = (x1, . . . , xm) = (Φ−1(u1), . . . ,Φ−1(um)).

The gradient and Hessian of log(cR) with respect to u are

∂ log c(u)

∂x
= (I −R−1)x,

∂ log c(u)

∂x∂x>
= I −R−1.

All third order partial derivatives and higher are zero.
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Derivatives of xit with respect to uit

We now use the relationship Φ(xi) = ui to compute derivatives of xi with respect

to ui. Differentiating with respect to ui gives φ(xi)
∂xi
∂ui

= 1, and thus

∂xi
∂ui

=
1

φ(xi)
.

Taking further derivatives gives

∂2xi
∂ui

= 2πex
2
ixi,

∂3xi
∂ui

= (2π)3/2e3x2i /2(2x2
i + 1),

∂4xi
∂ui

= (2π)2e2x2i (6x3
i + 7xi),

∂5xi
∂ui

= (2π)5/2e5x2i /2(24x4
i + 46x2

i + 7).
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Derivatives of Fε(e
−αit/2ηit|θi)

We describe here how to compute five derivatives of Fε(e
−αit/2ηit|θi) with respect

to αit. We write down the derivatives in terms of ψ(αit) ≡ log πε(e
−αit/2ηit|θi) :

∂Fε(e
−αit/2ηit|θi)
∂αit

= πε(e
−αit/2ηit|θi)

(
−1

2
e−αit/2ηit

)
= −ηit

2
e−0.5αit+ψ(αit)

Then
∂2Fε(e

−αit/2ηit|θi)
∂α2

it

= −ηit
2
e−0.5αit+ψ(αit)[−0.5 + ψ′(αit)]

∂3Fε(e
−αit/2ηit|θi)
∂α3

it

= −ηit
2
e−0.5αit+ψ(αit)

[
ψ′′(αit) + (−0.5 + ψ′(αit)

2
]

∂4Fε(e
−αit/2ηit|θi)
∂α4

it

= −ηit
2
e−0.5αit+ψ(αit) [ψ′′′(αit) + 3(−0.5 + ψ′(αit))ψ

′′(αit)

+ (−0.5 + ψ′(αit))
3
]

∂5Fε(e
−αit/2ηit|θi)
∂α5

it

= −ηit
2
eψ(αit)

[
ψ(4)(αit) + 4(−0.5 + ψ′(αit))ψ

′′′(αit)

+ 3(ψ′′(αit))
2

+ 6(−0.5 + ψ′(αit))
2ψ′′(αit)

+ (−0.5 + ψ′(αit))
4
]
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Faà di Bruno Formula

The Faà di Bruno Formula combines the derivatives of primitive functions to

obtain the derivatives of composite functions. We can use it to evaluate exact

multiple derivatives of compound functions at a point without needing to write out

the derivatives of the compound function in closed form.

For the composite function h = f ◦ g, the Faà di Bruno formula gives

h′ = f ′g′,

h′′ = f ′g′′ + f ′′(g′)2,

h′′′ = f ′g′′′ + 3f ′′g′g′′ + f ′′′(g′)3,

h(4) = f ′g(4) + 4f ′′g′g′′′ + 3f ′′(g′′)2 + 6f ′′′(g′)2g′′ + f (4)(g′)4,

h(5) = f ′g(5)+5f ′′g′g(4)+10f ′′g′′g′′′+15f ′′′(g′′)2g′+10f ′′′g′′′(g′)2+10f (4)g′′(g′)3+f (5)(g′)5.

If f (j) = 0 for j > 2, the third and higher derivatives simplify to

h′′′ = f ′g′′′ + 3f ′′g′g′′,

h(4) = f ′g(4) + 4f ′′g′g′′′ + 3f ′′(g′′)2,

h(5) = f ′g(5) + 5f ′′g′g(4) + 10f ′′g′′g′′′.
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2.7.3 Sampling r|α, θ, f, B,R

We draw r from π(r|α, θ, f, B,R) using the following steps :

1. Compute the Cholesky decomposition R = LL> of the correlation matrix R.

2. For each t = 1, ..., n :

(a) Draw z ∼ N(0, Im).

(b) Set g = Lz

(c) Compute the integral probability transform ui = Φ(gi), i = 1, ...,m,

where Φ is the standard univariate Gaussian cdf.

(d) Transform each of the ui to a Student’s t with νi degree of freedom :

ti = F−1(ui), where F−1 is the inverse cdf of a Student’s t distribution

with νi degrees of freedom.

(e) Scale each of the ti random variables to form εti = ti exp(0.5αti).

(f) Form rt = Bft + εt.

2.7.4 Tables of results

Table 2.6 to 2.13 present the posterior parameter distributions for univariate

SV-t models, MSV-q0 and MSV-q1 models. Table 2.14 and 2.15 present the pos-

terior mean of correlation matrices.
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Table 2.6 – Posterior statistics of parameters of univariate SV models with student-t errors (Part 1)

Parameters Mean Std NSE RNE

CHF
ᾱi -10.195 0.189 1.900e-03 2.048e-01
Aii 0.993 0.003 0.000e+00 4.056e-01
σii 0.061 0.010 1.000e-04 5.362e-01
νi 12.530 3.062 2.110e-02 4.227e-01
σα 0.491 0.139 7.0000e-04 7.0480e-01
EUR
ᾱi -10.333 0.218 1.600e-03 3.843e-01
Aii 0.994 0.002 0.000e+00 5.048e-01
σii 0.061 0.010 1.000e-04 4.387e-01
νi 18.507 6.252 3.760e-02 5.538e-01
σα 0.540 0.143 6.0000e-04 1.0815e+00
AUD
ᾱi -10.089 0.190 1.400e-03 3.465e-01
Aii 0.988 0.004 0.000e+00 3.944e-01
σii 0.104 0.013 1.000e-04 3.839e-01
νi 15.225 4.279 3.350e-02 3.261e-01
σα 0.657 0.133 7.0000e-04 8.1990e-01
NZD
ᾱi -9.980 0.144 1.100e-03 3.473e-01
Aii 0.983 0.006 0.000e+00 5.296e-01
σii 0.104 0.018 1.000e-04 6.050e-01
νi 10.547 2.294 1.410e-02 5.258e-01
σα 0.557 0.131 6.0000e-04 9.1270e-01
MXN
ᾱi -10.880 0.142 1.000e-03 3.906e-01
Aii 0.971 0.008 0.000e+00 5.010e-01
σii 0.188 0.023 1.000e-04 5.632e-01
νi 33.955 13.626 7.180e-02 7.197e-01
σα 0.776 0.129 6.0000e-04 8.4840e-01
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Table 2.7 – Posterior statistics of parameters of univariate SV models with student-t errors (Part 2)

Parameters Mean Std NSE RNE

BRL
ᾱi -9.711 0.194 1.200e-03 5.672e-01
Aii 0.973 0.006 0.000e+00 6.677e-01
σii 0.253 0.023 1.000e-04 7.442e-01
νi 37.990 15.446 1.012e-01 4.661e-01
σα 1.073 0.148 8.0000e-04 7.2330e-01
GBP
ᾱi -10.637 0.174 1.500e-03 2.615e-01
Aii 0.989 0.004 0.000e+00 4.604e-01
σii 0.088 0.013 1.000e-04 5.834e-01
νi 22.118 8.072 5.420e-02 4.429e-01
σα 0.566 0.135 6.0000e-04 8.6320e-01
CAD
ᾱi -10.729 0.255 2.100e-03 3.050e-01
Aii 0.993 0.002 0.000e+00 4.161e-01
σii 0.078 0.010 1.000e-04 4.885e-01
νi 28.675 11.221 6.720e-02 5.579e-01
σα 0.662 0.150 6.0000e-04 1.1276e+00
JPY
ᾱi -10.369 0.148 1.100e-03 3.370e-01
Aii 0.986 0.005 0.000e+00 2.992e-01
σii 0.087 0.014 1.000e-04 3.502e-01
νi 11.220 2.528 1.580e-02 5.121e-01
σα 0.504 0.116 6.0000e-04 7.1950e-01
SGD
ᾱi -11.953 0.154 1.200e-03 3.081e-01
Aii 0.984 0.006 0.000e+00 3.795e-01
σii 0.102 0.017 1.000e-04 4.366e-01
νi 11.814 2.681 1.560e-02 5.915e-01
σα 0.568 0.136 7.0000e-04 6.7830e-01
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Table 2.8 – Posterior statistics of parameters of log volatility equation in the MSV-q0 model (Part 1)

Parameters Mean Std NSE RNE

CHF
ᾱi -10.594 0.095 7.1266e-03 4.4129e-03
Aii 0.97 0.008 2.3179e-04 2.8595e-02
Aij 0.002 0.001 2.3891e-05 2.7707e-02
σii 0.0746 0.016 3.6917e-04 4.4277e-02
νi 16.19 3.216 7.7741e-02 4.2774e-02
σα 0.324 0.060 1.3822e-03 4.7283e-02
EUR
ᾱi -10.764 0.112 7.1074e-03 6.2172e-03
Aii 0.98 0.004 1.0760e-04 4.2351e-02
Aij 0.001 0.000 1.1393e-05 4.2358e-02
σii 0.0722 0.014 2.9354e-04 5.4371e-02
νi 23.50 6.342 1.5043e-01 4.4441e-02
σα 0.404 0.070 1.5928e-03 4.7762e-02
AUD
ᾱi -10.387 0.114 8.1451e-03 4.8991e-03
Aii 0.97 0.010 2.3804e-04 4.6442e-02
Aij 0.003 0.001 2.6327e-05 4.8545e-02
σii 0.1294 0.024 4.3514e-04 7.3557e-02
νi 18.15 4.237 8.6456e-02 6.0037e-02
σα 0.513 0.084 2.0306e-03 4.2290e-02
NZD
ᾱi -10.226 0.101 6.9267e-03 5.2884e-03
Aii 0.96 0.012 2.4565e-04 5.6291e-02
Aij 0.003 0.001 2.7232e-05 4.8866e-02
σii 0.1268 0.026 6.1017e-04 4.7135e-02
νi 12.78 2.444 4.6843e-02 6.8060e-02
σα 0.472 0.082 1.8883e-03 4.6627e-02
MXN
ᾱi -10.911 0.127 8.3612e-03 5.7422e-03
Aii 0.95 0.011 2.3910e-04 5.0846e-02
Aij 0.004 0.001 2.6614e-05 5.4285e-02
σii 0.2353 0.041 1.0775e-03 3.6274e-02
νi 38.12 14.615 3.3147e-01 4.8600e-02
σα 0.792 0.118 3.2518e-03 3.2956e-02



87

Table 2.9 – Posterior statistics of parameters of log volatility equation in the MSV-q0 model (Part 2)

Parameters Mean Std NSE RNE

BRL
ᾱi -9.721 0.186 1.3186e-02 4.9542e-03
Aii 0.97 0.006 1.4302e-04 4.5711e-02
Aij 0.002 0.001 1.6865e-05 6.1487e-02
σii 0.2869 0.044 7.7500e-04 7.9142e-02
νi 40.69 16.323 3.7063e-01 4.8490e-02
σα 1.137 0.166 2.9253e-03 8.0389e-02
GBP
ᾱi -10.884 0.101 8.1928e-03 3.7836e-03
Aii 0.96 0.011 3.3021e-04 2.7418e-02
Aij 0.003 0.001 3.4675e-05 2.8054e-02
σii 0.1158 0.022 4.6367e-04 5.6518e-02
νi 25.25 8.309 2.1649e-01 3.6826e-02
σα 0.433 0.072 1.5308e-03 5.5078e-02
CAD
ᾱi -10.884 0.142 8.3868e-03 7.1511e-03
Aii 0.99 0.004 7.2136e-05 5.9020e-02
Aij 0.001 0.000 8.9339e-06 5.2327e-02
σii 0.0960 0.017 3.2542e-04 6.9751e-02
νi 31.07 11.796 2.4744e-01 5.6812e-02
σα 0.578 0.094 1.9962e-03 5.5770e-02
JPY
ᾱi -10.456 0.106 7.2345e-03 5.3986e-03
Aii 0.96 0.010 2.4814e-04 4.2152e-02
Aij 0.003 0.001 2.7392e-05 4.0232e-02
σii 0.1227 0.024 4.1054e-04 8.7760e-02
νi 13.21 3.156 1.0109e-01 2.4375e-02
σα 0.473 0.082 1.5759e-03 6.7970e-02
SGD
ᾱi -12.132 0.097 7.7733e-03 3.8583e-03
Aii 0.94 0.018 4.3584e-04 4.4761e-02
Aij 0.006 0.002 4.8223e-05 4.1560e-02
σii 0.1550 0.033 7.7144e-04 4.6245e-02
νi 14.41 3.319 7.9066e-02 4.4053e-02
σα 0.450 0.074 1.5790e-03 5.5276e-02
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Table 2.10 – Posterior statistics of parameters of log volatility equation in the MSV-q1 model (Part 1)

Parameters Mean Std NSE RNE

CHF
ᾱi -12.913 0.210 1.1413e-02 8.5047e-03
Aii 0.98 0.007 1.9454e-04 2.8507e-02
Aij 0.001 0.001 2.1978e-05 2.5953e-02
σii 0.211 0.043 1.4328e-03 2.2969e-02
νi 9.423 2.724 1.0473e-01 1.6920e-02
σα 0.974 0.165 5.8899e-03 1.9739e-02
EUR
ᾱi -13.565 0.222 1.4209e-02 6.0833e-03
Aii 0.97 0.007 2.7650e-04 1.7289e-02
Aij 0.001 0.001 3.3092e-05 1.3731e-02
σii 0.218 0.048 1.7203e-03 1.9101e-02
νi 15.823 7.375 3.2775e-01 1.2660e-02
σα 0.977 0.163 6.6350e-03 1.5145e-02
AUD
ᾱi -10.751 0.116 8.6855e-03 4.4563e-03
Aii 0.94 0.019 5.6233e-04 2.9813e-02
Aij 0.005 0.002 5.5356e-05 2.9620e-02
σii 0.161 0.034 8.8369e-04 3.6101e-02
νi 9.641 1.708 3.8678e-02 4.8760e-02
σα 0.474 0.079 1.9784e-03 3.9497e-02
NZD
ᾱi -10.503 0.107 7.1830e-03 5.5007e-03
Aii 0.97 0.010 2.6698e-04 3.7050e-02
Aij 0.002 0.001 2.3473e-05 3.5510e-02
σii 0.110 0.024 5.4657e-04 4.7496e-02
νi 8.528 1.248 3.1835e-02 3.8428e-02
σα 0.439 0.076 2.1354e-03 3.1525e-02
MXN
ᾱi -10.902 0.136 8.8611e-03 5.8568e-03
Aii 0.96 0.010 2.8022e-04 3.2519e-02
Aij 0.003 0.001 2.6870e-05 3.8055e-02
σii 0.229 0.039 8.4206e-04 5.4197e-02
νi 37.830 14.900 4.0716e-01 3.3482e-02
σα 0.788 0.117 2.5907e-03 5.1014e-02
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Table 2.11 – Posterior statistics of parameters of log volatility equation in the MSV-q1 (Part 2)

Parameters Mean Std NSE RNE

BRL
ᾱi -9.715 0.190 1.2265e-02 6.0073e-03
Aii 0.97 0.006 1.3283e-04 5.4991e-02
Aij 0.002 0.001 2.0593e-05 3.3084e-02
σii 0.286 0.046 1.0295e-03 4.9610e-02
νi 40.773 16.229 4.3679e-01 3.4516e-02
σα 1.136 0.170 3.9321e-03 4.6466e-02
GBP
ᾱi -11.442 0.116 8.6300e-03 4.4953e-03
Aii 0.95 0.016 4.2810e-04 3.3885e-02
Aij 0.004 0.001 4.1659e-05 3.1862e-02
σii 0.147 0.034 6.8056e-04 6.3592e-02
νi 13.247 4.334 1.4878e-01 2.1219e-02
σα 0.491 0.085 1.8577e-03 5.2150e-02
CAD
ᾱi -10.919 0.129 7.0184e-03 8.3930e-03
Aii 0.98 0.005 1.2659e-04 3.1920e-02
Aij 0.001 0.000 1.1682e-05 3.2690e-02
σii 0.101 0.019 4.3968e-04 4.5543e-02
νi 29.651 11.388 2.8737e-01 3.9266e-02
σα 0.540 0.087 1.8511e-03 5.5488e-02
JPY
ᾱi -10.584 0.131 8.0320e-03 6.7004e-03
Aii 0.97 0.008 2.1608e-04 3.5409e-02
Aij 0.002 0.001 2.1152e-05 3.5898e-02
σii 0.141 0.027 6.0917e-04 4.9221e-02
νi 11.341 2.611 6.5062e-02 4.0255e-02
σα 0.588 0.097 2.3360e-03 4.2833e-02
SGD
ᾱi -12.297 0.109 7.8026e-03 4.9218e-03
Aii 0.95 0.016 5.0045e-04 2.5373e-02
Aij 0.004 0.001 4.3480e-05 2.9719e-02
σii 0.163 0.037 1.1153e-03 2.7135e-02
νi 11.883 2.633 5.5718e-02 5.5822e-02
σα 0.504 0.085 2.4041e-03 3.1497e-02
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Table 2.12 – Posterior statistics of parameters of the factor volatility for MSV-q1 model

Mean Std NSE RNE

AR(1) 0.9903 0.003 6.2776e-05 4.453e-02
ν 21.25 7.831 2.0041e-01 3.8173e-02

Table 2.13 – Posterior statistics of loading factor matrix B for MSV-q1 model

Mean Std NSE RNE

B1 -6.0683e-03 4.0507e-04 3.4856e-05 3.3765e-03
B2 5.5567e-03 3.7097e-04 3.2516e-05 3.2540e-03
B3 3.8570e-03 2.6975e-04 2.2083e-05 3.7304e-03
B4 3.8550e-03 2.7787e-04 2.1401e-05 4.2145e-03
B5 -8.6580e-05 8.8846e-05 2.0822e-06 4.5518e-02
B6 -7.0001e-04 1.4292e-04 6.0137e-06 1.4121e-02
B7 3.7751e-03 2.6207e-04 2.1915e-05 3.5753e-03
B8 -1.5098e-03 1.3428e-04 8.2632e-06 6.6019e-03
B9 -2.6726e-03 2.1028e-04 1.4747e-05 5.0834e-03
B10 -1.3541e-03 1.0205e-04 7.4755e-06 4.6590e-03



91

Table 2.14 – Posterior mean of correlation matrix R11 for MSV-q0 model
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Table 2.15 – Posterior mean of correlation matrix R11 for MSV-q1 model
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Table 2.16 – Average of posterior mean of conditional correlation matrix Corr(rt|αt) for MSV-q1 model
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Chapter 3 :

The information content of

Realized Volatility

3.1 Introduction

Modeling and forecasting volatility is one of the most active areas of research

in finance, e.g., portfolio design and risk management. However volatility is re-

cognized to be time varying, and is not directly observable, rather it is a latent

variable. The recent availability of ultra-high frequency data has made the use of

non parametric measurements such as the Realized Volatility (RV) estimator pro-

posed by (Andersen and Bollerslev 1998) more attractive. The basic RV estimator

is computed as the sum of squared intra-day returns.

RVt =
∑m

j=1 r
2
t,j

Andersen and Bollerslev (1998) and Andersen, Bollerslev, Diebold, and Lays

(2001) show that, under general conditions, RV is a consistent estimator of the in-

tegrated variance of the price process IVt =
∫ t
t−1

σ2
τdτ asm goes to infinity. However,

measurement errors in prices, known as microstructure effects and the possibility of

jumps can cause RV to be a biased estimator of integrated volatility 11. Therefore,

11. Microstructure effects capture a variety of frictions inherent in the trading process : bid
ask bounces, discreteness of price changes, differences in trade sizes or informational content of
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multiple variations of this basic realized volatility now exist to address these issues.

To control for microstructure noise, the first solution proposed was to use sparse

RV estimators, ignoring very high frequency data and focusing on determining an

optimal frequency (see for example Ait-Sahalia, Mykland, and Zhang (2005), Zhou

(1996) ). More recent studies propose estimators that explicitly deal with micro-

structure noise while taking advantage of the highest frequency available. In this

line are the two scales realized volatility estimator of Zhang, Mykland, and Ait-

Sahalia (2005) and the realized kernel estimator of Barndorff-Nielsen, E., Hansen,

Lunde, and Shephard (2008). To distinguish between jumps and diffusion move-

ments, estimators such as the bi-power variations are used (see Barndorff-Nielsen

and Shephard (2004), Andersen, Bollerslev, and Diebold (2007)).

The realized volatility literature typically attempts to evaluate these compe-

ting measures by their ability to predict integrated volatility, IVt+1. A popular

approach to compare volatility forecasts is to use the R2 of a Mincer-Zarnowitz

style regression 12 :

IVt+1 = α + βRVt + εt

However, since IVt+1 is never exactly known, it is typically replaced by a RVt+1

measure ; and as RV is an estimated quantity, there is an error-in-variable problem

in the estimation. Patton (2008) proposes a data-based ranking of RV estimators.

For account of practicality it is often assumed that the true volatility process fol-

lows a random walk. However, Wright (1999), Jacquier, Polson, and Rossi (1994),

Jacquier, Polson, and Rossi (2004) show strong evidence against a random walk in

volatility. This is a crucial difference, especially for multi-step forecasts.

The empirical realized volatility literature most often documents the ability of

RV estimators to forecast themselves. In contrast, we take the standpoint of an

price changes, gradual response of prices to a block trade, strategic component of the order flow,
inventory control effects, etc. (For more discussion about microstructure noise see Hasbrouck
(1993))

12. See for example Andersen, Bollerslev, Diebold, and Lays (2003), Andersen, Bollerslev and
Meddahi [2005, 2006], Corsi (2009).
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investor who recognizes that the daily variance is a latent variable, ht, and that

RVt is only an observable proxy with information on this latent variable, not the

object to be predicted. Our objective is to measure the contribution of different

RV estimators to the quality of inference and forecast of the latent variance ht in

periods of stress, when getting volatility right is most important.

We use a classic stochastic volatility (SV) model as the benchmark model. SV

models and GARCH-type models are the most popular parametric models used to

estimate unobserved volatility. SV models differs from the GARCH type models

in that the conditional volatility is treated as a latent variable and not a deter-

ministic function of lagged returns. This feature makes SV models more flexible

than GARCH-type models. Jacquier, Polson, and Rossi (1994), Kim, Shephard,

and Chib (1998) show that a lot can be gained from the added flexibility of the SV

models over the GARCH models, especially in times of stress (Geweke (1994)).

The investor, absent of intra-day information, can consider reduced form SV

models of the type :

rt =
√
htεt

log ht+1 = α + δ log ht + σvvt+1 (3.1)

εt, vt can be correlated and have fat tails, 0 < δ < 1.

She can initially incorporate the intra-day information into this parametric

model under the form of an exogenous variable (Xt). This leads to an augmented

model of the type (Model 1) :

log ht+1 = α + βXt + δ log ht + σvvt+1 (3.2)

The addition of exogenous variables to the volatility equation is a technically

simple but potentially useful extension of the SV model. Other variables of interest

can be incorporated in the SV equation, such as implied volatility or the number

of non-trading days between observations.
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In (3.2), RV is treated as an exogenous variable. Competing measures can be

introduced simply as multiple right-hand side variables. As mentioned previously,

it can suffer from the error-in-variable problem. Alternatively we can characterize

the link between RVt and ht as :

log ht+1 = α + δ log ht + σvvt+1

logRVt = β0 + β1 log ht + σηηt, (3.3)

This specification, denoted Model 2, explicitly reflects the fact that RVt is a

noisy estimate of log ht, possibly allowing for its error ηt to be correlated with vt+1.

The parameters β0, β1 and ση are informative about the link between measure and

volatility. Competing volatility measures can be introduced via seemingly unrelated

measurement equations of possible correlated measure errors.

We provide Bayesian MCMC algorithms to implement these three models, de-

riving the exact optimal smoothers and filters for volatility. We perform posterior

analysis, smoothing and prediction on (3.1), (3.2) and (3.3). We conduct simu-

lations to document what reduction in volatility uncertainty can be expected by

incorporating RVt through (3.2) and (3.3). Using the root-mean-squared error of

the posterior mean, we show that, for simulated data, RV measures improve out-of-

sample volatility forecasts. We also find that (3.3) exploits the information content

of the RV estimators better, providing improved in sample and out of sample esti-

mation of volatility than using specification (3.2).

We apply the models on four daily country index returns and three foreign

exchange currencies. Our data covers the period between 2006-2009 which allows

us to evaluate the information of RV estimators during periods of stress, when

getting volatility estimations right or wrong becomes very important. In addition,

we also evaluate the information content of implied volatility and compare it to

the results obtained using the realized volatility estimator. We use odds ratios to

compare the models. The odds are calculated for the entire period, and sequentially

using MCMC methods and a particle filter. We show that the odds ratios are in
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favor of the model with realized volatility compared to the benchmark model. When

introducing implied volatility to study S&P500’s volatility, we find strong evidence

that the implied volatility index contains all the information in the RV estimator

and more.

Approaches similar to ours, combining SV models with intra-day variance es-

timators, are those of Koopman, Jungbackera, and Hol (2005), Takahashi, Omori,

and Watanabe (2009), Brandt and Jones (2005). Koopman, Jungbackera, and Hol

(2005) consider a model similar to (3.2) and compare it with other models to eva-

luate the one day ahead volatility forecasting of the S&P100. Realized volatility is

taken as the proxy for assessing the relative forecast accuracy of models. Takahashi,

Omori, and Watanabe (2009) consider a model similar to (3.3). They propose a

Bayesian MCMC approach to estimate it and apply it to study the Tokyo stock

price index volatility. They focus on inference and find that the effect of non trading

hours is more important than that of the microstructure noise and they show that

considering asymmetry between the return equation and the latent volatility equa-

tion improves the fit of the model. Brandt and Jones (2005) proposed a MCMC

algorithm to estimate SV models using a daily range estimator. They show, by

simulations, that using the daily range estimator improves the fit of the model.

However, their results are only in-sample and do not include RV estimators.

This chapter is organized as follows : Section 3.2 explains the MCMC algorithms

used to estimate the models. Section 3.3 presents the performance evaluation of

the models used. Section 3.4 describes the data and presents the empirical results.

Finally, Section 3.5 summarizes our main conclusions and future extensions.

3.2 MCMC algorithms

In this section we describe the MCMC algorithms used to estimate Model 1

and Model 2 and the choice of priors.
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3.2.1 Model 1

Model 1 refers to specification (3.2). We extend the MCMC algorithm proposed

by Jacquier, Polson, and Rossi (2004) (JPR) to include exogenous variables. We

review the algorithm for a general case with fat tails and correlated errors below.

The general model specification is given by :

rt =
√
htλtεt

log ht+1 = α + βXt + δ log ht + σvvt+1, ut+1 = σvvt+1

ν

λ
∼ χ2

ν

(εt, ut+1) ∼ N(0,Σ), corr(vt+1, εt) = ρ

Yu (2005) shows that the timing of the variables in the original JPR algorithm for

correlated errors implied a non zero expected return, which makes the interpreta-

tion of the correlation parameter difficult. The timing problem is related to the fact

that JPR specifies corr(vt, εt) = ρ instead of using corr(vt+1, εt) = ρ. In this paper

we adjust the algorithm to work with the correct specification. The strategy for

drawing the parameters and the volatilities involves cycling through the following

steps :

1. Rewrite the model as r∗t = rt/
√
λ =
√
hεt, εt ∼ N(0, 1).

2. Draw ω = (α, β, δ) : p(ω|r∗, σv, h,X) = p(ω|σv, h,X) is the posterior from

a linear regression. Using standard analytical results, direct draws can be

made.

3. Draw (ρ, σv) :

– Transform (ρ, σv) to (Φ,Ω) :

Σ∗ =

(
1 Φ

Φ Ω + Φ2

)
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Ω = σ2
v(1− ρ2)

Φ = σvρ

– Draw Ω,Φ :

p(Φ|Ω, ω, h) ∼ N(Φ̄,Ω/(a11 + p0))

p(Ω|ω, h, r) ∼ IG(v0 + T − 1, v0t
2
0 + a22,1)

where Φ̄ = (a11Φ + p0Φ0)/(a11 + p0), aij is the ij element of A =
∑
atat

>,

at = (εt, ut+1)>.

4. Draw h : p(ht|ht−1, ht+1, r
∗,Σ∗) = p(ht|.)

p(ht|.) ∝
1

ht
exp

(
−1

2
tr(Σ∗−1at−1at−1

>)

)
1√
ht
exp

(
−1

2
tr(Σ∗−1atat

>)

)

p(ht|.) ∝
1

h
(1.5)
t

exp

(
−r∗t 2

2ht
(1 +

Φ2

Ω
)−

(u2
t+1 + u2

t )

2Ω
+

Φ

Ω

(
r∗t−1√
ht−1

ut +
r∗t√
ht
ut+1

))

p(ht|.) ∝
1

h

1.5−
Φr∗t−1

Ω
√
ht−1


t

exp

(
−r∗t 2

2ht
(1 +

Φ2

Ω
)− (log ht − µt)2

2Ω/(1 + δ2)
+

Φ

Ω

(
r∗t√
ht
ut+1

))

where :

µt =
(α(1− δ)− β(δXt −Xt−1) + δ(log ht+1 + log ht−1))

1 + δ2

An accept/reject and Metropolis-Hastings are used to draw from the posterior
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of ht. The proposal density (q) is an inverse gamma distribution :

q(ht|.) ∼ IG(φt, θ
∗
t ) ∝

1

h
(φt+1)
t

e(−θ∗t /ht)

where the parameters of the proposal are :

φt = − Φyt−1

Ω
√
ht−1

+ 0.5 + φLN = − Φyt−1

Ω
√
ht−1

+ 0.5 +
1− 2e

Ω

1 + δ2

1− e
Ω

1 + δ2

θ∗t = θt − sΦr∗t /Ω =
r∗t

2

2
(1 +

Φ2

Ω
) + θLN − sΦr∗t /Ω

θLN = (φLN − 1)e
(µt+0.5

Ω

1 + δ2
)

s is the slope between two points around the mode of ut+1/
√
ht = −δ(log ht−

(log ht+1 − α− βXt)

δ
)/
√
ht. The presence of the term sΦr∗t /Ω in θ∗t seeks to

take account of the effect of the term ut+1/
√
ht in the posterior distribution of

ht into the proposal distribution when ρ is different from zero. (See Jacquier,

Polson, and Rossi (2004)).

5. Draw λ :

p(λt|rt, ht, ν) ∼ IG

(
ν + 1

2
,

2

(r2
t /ht) + ν

)
6. Draw ν : (rt|ht, ν) ∼ t(ν), so ν is a multinomial distribution (discrete) with

probability mass proportional to the product of t distribution ordinates.

The introduction of an exogenous variable in the log volatility equation results

in a trivial modification of the original JPR algorithm. The steps affected are (2)

and (4). In step (2) we have one additional parameter, β, to estimate compared to

the basic case and in step (4) the parameter µt of the conditional posterior of ht

takes into account the effect of the exogenous variable in the posterior mean of ht.
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This methodology describes a posterior simulator that draws volatility propo-

sals one observation at a time. Kim, Shephard, and Chib (1998) (KSC) propose

a multi-move sampler that draws volatilities and parameters as a block and as a

consequence reduce autocorrelation of the draws. They use a discrete mixture of

normal distributions as an approximation to the log square of the return shock.

Then they employ a data augmentation technique to draw the series of log vola-

tilities directly from their conditional distribution given parameters and discrete

latent mixture component indicators. In Section 3, we compare both methodologies

and show that results are basically identical.

3.2.2 Model 2

In Model 2, we incorporate a separate measurement equation to model the error

of the Realized Volatility estimator (3.3). The general model is :

rt =
√
htλtεt

logRVt = β0 + β1 log ht + σηηt, zt = σηηt

log ht+1 = α + δ log ht + σvvt+1, ut+1 = σvvt+1

(εt, zt, ut+1) ∼ N(0,Σ)

Σ =

 1 0 ρ1σv

0 σ2
η 0

ρ1σv 0 σ2
v


To draw the parameters and the volatilities we follow the same steps as in Model

1, but modify step (2) and step (4) :

– In step (2), we now have to draw the parameters of the log volatility equation

and those of the log RV equation, ω = (α, δ, σv, β0, β1, ση). With corr(ηt, vt) =

0, we can estimate the parameters of the two regressions independently using

direct draws from their respective conditional posterior distributions : p(α, δ|h, σv)
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and p(β0, β1|h,RV, ση), p(ση|β0, β1, h, RV ). To draw σv we use the same trans-

formation given in step (3) of Model 1 algorithm.

– In step (4), we now have that Σ is a 3× 3 matrix. Σ−1 is given by :

Σ−1 =

 S11 S12 S13

S12 S22 S23

S13 S23 S33

 =


1

(1− ρ2
1)

0 − ρ1

(1− ρ2
1)σv

0
1

σ2
η

0

− ρ1

(1− ρ2
1)σv

0
1

(1− ρ2
1)σ2

h


The posterior of volatilities is p(ht|ht+1, ht−1, rt, logRVt,Σ, ωRV , ωv) = p(ht|.)

p(ht|.) ∝ h−1.5
t exp

(
−1

2

(
tr(Σ−1ata

>
t ) + tr(Σ−1at−1a

>
t−1

))
where at = (εt, zt, ut+1).

Expanding the terms we obtain :

∝ 1

h
(1.5+S13εt−1)
t

exp

[
−1

2
S11

r2
t

ht
− S13εtut+1 −

1

2

(log ht − µ∗t )2

s∗2

]

where the terms µ∗t and s∗2 are given by :

µ∗t =
µ1ts

−2
1 + µ2ts

−2
2

s−2
1 + s−2

2

, s∗2 =
1

s−2
1 + s−2

2

where :

µ2t =
logRVt − β0

β1

, µ1t =
α(1− δ) + δ(log ht+1 + log ht−1)

(1 + δ2)

s2
2 =

1

S22β2
1

, s2
1 =

1

S33(1 + δ2)
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The proposal is an inverse gamma, as in Model 1 :

q(ht|.) ∼ IG(φt, θ
∗
t ) ∝

1

h
(φt+1)
t

e(−θ∗t /ht)

where :

φt = S13
yt−1√
ht−1

+ 0.5 + φLN = S13
yt−1√
ht−1

+ 0.5 +
1− 2e

Ω

1 + δ2

1− e
Ω

1 + δ2

θ∗t = θt − slS13r
∗
t = S11

r∗t
2

2
+ (φLN − 1)e(µ∗t+0.5s∗2) − sS13r

∗
t

s is the slope between two points around the mode of ut+1/
√
ht = −δ(log ht−

(log ht+1 − α)

δ
)/
√
ht.

Model 2 can be further extended to include additional proxies of volatility. In

Appendix 3.6.1 we present the algorithm for a bivariate Model 2.

3.2.3 Priors

We describe the priors that we use for the parameters of Model 1 and 2. We

use a standard Normal-Gamma prior for p(ωh) and p(ωRV ), a conjugate Inverse

Gamma for p(λt|ν), a uniform discrete prior for ν, a normal prior for p(Φ) and an

inverse gamma for p(Ω) :

– α|σ2
v ∼ N(α̃, C11σ

2
v)

– β|σ2
v ∼ N(β̃, C22σ

2
v)

– δ|σ2
v ∼ N(δ̃, C33σ

2
v)

– β0|σ2
η ∼ N(β̃0, V11σ

2
η)

– β1|σ2
η ∼ N(β̃1, V22σ

2
η)

– ση ∼ IG(
x0

2
,

2

x0q2
0

)

– Φ|Ω ∼ N(Φ̃,Ω/p0)
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– Ω ∼ IG(
ṽ

2
,

2

ṽt20
)

– λt|ν ∼ IG(
ν

2
,

2

ν
) ∼ v/χ2

(ν)

– ν ∼ U [ν, ν̄]

The set of hyper-parameters :{
α̃, β̃, δ̃, β̃0, β̃1, C11, C22, C33, V11, V22, x0, q

2
0, ν, ν̄, Φ̃, p0, ṽ, t

2
0

}
is set to :

{0, 0, 0, 0, 0, 100, 100, 100, 100, 100, 10, 0.01, 3, 40, 0, 2, 10, 0.01}

3.3 Performance evaluation

In this section, we conduct sampling experiments to assess the performance of

the Bayesian inference on volatilities and parameters. Specifically, we document

what reduction in volatility uncertainty can be expected by incorporating RVt to

the basic SV model using Model 1 and Model 2. For example, we want to know at

what rate the smoothing performance improves as the intra-day frequency used to

compute the RV estimator increases, when prices are measured with and without

errors.

We simulate daily volatility (ht) from the log AR(1) SV model (3.1) with para-

meters : α = −0.37, δ = 0.96, σv = 0.21, which implies an annualized volatility of

17%. We assume constant intra-day volatility and simulate intra-day returns with

and without noise. Noiseless returns are generated as :

rnoiselesst,j = p∗t,j − p∗t,j−1

p∗t,j = p∗t,j−1 +
√
ht,jξt,j, ξt,j ∼ N(0, 1), j = 1, . . . ,m
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and noisy returns are generated assuming an i.i.d. noise process :

rnoisyt,j = pt,j − pt,j−1

pt,j = p∗t,j + εt,j, εt,j ∼ i.i.d.N(0, σ2
ε ), j = 1, . . . ,m

(3.4)

where ht,j = ht/m is the constant intra-day volatility, m is the number of intra-

day observations, p∗ is the logarithm of the noiseless price (true price), p is the

logarithm of the noisy price (observed price) and σε is the volatility of the i.i.d.

noise ε. We set σε = 0.08% which is within the the range of values found in existing

studies of empirical market microstructure and it implies that around 40% of the

variance of the 5-minute return is attributable to microstructure noise 13 14.

We simulate 500 samples of 1500 daily observation with 780 observations per day

(m = 780), which corresponds to 30 second data over a 6.5-hour trading day. We

construct the following estimators : RV 30sec, uses the highest frequency available

(30 seconds) ; RV 5min, uses five minute returns ; and TSRV 5min, is a two-scale

estimator based on sub-sampling to mitigate the effect of microstructure noise.

TSRV is computed as follows. Every day, the intra-day returns are partitioned

into K sub-samples of 5 minute returns and a RV estimator is calculated for each

sub-sample. Then, the TSRV is calculated as :

TSRVt =
1

K

K∑
k=1

RV k
t −

m̄

m
RV all

t

13. Ait-Sahalia, Mykland, and Zhang (2005) review different empirical studies and document
that the value of σε varies by type of security, market and time period. They found different
values in the range of (0, 1.8%).

14. Using Ait-Sahalia, Mykland, and Zhang (2005) definition, the proportion of the total 5-
minute return variance that is market-microstructure induced is :

π =
2σ2

ε

σ2
d∆ + 2σ2

ε

where σ2
d is the unconditional daily variance of the returns and ∆ = 5/390 considering a day of

6.5 hours.
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where RV all is the RV estimator calculated with all available intra-day returns, m

is the the number of observations per day and m̄ = m/K is the average size of the

sub-samples.

Table 3.1 reports the magnitude of the bias inherent in each estimator when

prices are measured with error. The column �Average Mean� presents the average

of the estimator over the 500 samples, the column �Average Bias� shows the dif-

ference between the average true variance and the average RV estimator, and the

column �Theoretical Bias� is the expected value of the bias for each estimator. The

expected bias of an RV estimator is 2mσε2, where m is the number of intra-day

returns used to construct the estimator. So, the higher the frequency used to com-

pute the RV estimator, the bigger the bias. The bias in sampling every 5 minutes

is 9 times smaller than when we use 30 seconds.

Table 3.1 – Properties of simulated RV measures

Average Mean Average Bias Theoretical Bias

True variance 0.0001278
RV 30 sec 0.0011262 0.0009983 0.0009984
RV 5 min 0.0002278 0.0001000 0.0000998

TSRV 5 min 0.0001264 -0.0000014 0.0000000

In addition to these RV estimators we also consider the daily Range, which is

another popular variance estimator proposed by Parkinson (1980) based on the

difference between the highest and lowest logarithm price of the day :

Ranget = 0.361 [max(pt,j)−min(pt,j)]
2 (3.5)

In the following sections we report the sampling distribution of the posterior

means of the parameters and (in-sample) volatilities, and the predictive means of

the (out-of-sample) volatilities. We consider the cases when prices are observed with

and without error. For each sample, we generate 31,000 draws from the MCMC

algorithm and discard the first 1,000 draws. We evaluate sampling performance

through the root mean squared error (RMSE) and the percentage mean absolute
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error (%MAE) of the parameters and (in-sample) volatilities. There is no reason to

believe that the posterior mean is an unbiased estimator of the true parameter in

the sampling sense. However, we can still use this approach to compare competing

estimators of the same simulated data. The in-sample inference is based on the

first 1,495 daily observations of the 500 samples (747,500 daily variances). The

predictive inference is carried out as follows. We generate five day ahead volatility

forecasts, for each sample estimated with 1,495 observations, that is a total of 2,500

daily forecasts, conditional on the information up to T = 1, 495. We evaluate the

performance of each of the 5 day-ahead forecasts as well as the forecast for one

week volatility,
√
hw =

√
hT+1 + ...+ hT+5.

3.3.1 Performance with Model 1

We start our performance evaluation using Model 1 (M1). We use the basic

form which does not include correlation or fat tails :

rt =
√
htλtεt

log ht+1 = α + β logRVt + δ log ht + σvvt+1

We compare the results of Model 1 to those obtained from the standard SV model

(M0) in which we do not incorporate any explanatory variable in the log volatility

equation. We analyze the results using the noiseless and noisy returns in order to

examine the impact of microstructure noise in the efficacy of the RV estimators to

provide useful information to the estimation of the true volatility.

Performance with no microstructure noise

We use the noiseless returns to estimate M1 model. If useful to the investor,

the RV estimate used as an exogenous variable in the volatility equation, should

result in posterior densities of volatilities closer to those simulated without the

use of RV. We also expect to have an estimation of β + δ close to 0.96. Arguably,

as RV complements the information from the the naive reduced-form AR(1), the
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lagged value of ht becomes less relevant. Table 3.2 presents the sample average of

the posterior means, 5th and 95th percentile, as well as their RMSE across the 500

sample for each of the 4 cases considered : no RV, RV 30sec, RV 5 min and the

Range.

Table 3.2 – Posterior parameter distribution - Model 1 on noiseless returns

Models α β δ σv β + δ

True value -0.37 0.96 0.21

M0
Average -0.479 0.948 0.229
5% -0.744 0.92 0.176
95% -0.268 0.971 0.291
RMSE 0.192 0.021 0.041

M1-RV 30sec - true prices
Average -0.321 0.819 0.146 0.187 0.965
5% -1.031 0.633 0.017 0.066 0.888
95% 0.364 0.972 0.334 0.33 1.039
RMSE 0.435 0.16 0.816 0.065 0.047

M1-RV 5min - true prices
Average -0.524 0.683 0.259 0.195 0.942
5% -1.09 0.509 0.08 0.077 0.881
95% -0.097 0.852 0.446 0.327 0.988
RMSE 0.308 0.29 0.707 0.067 0.034

M1-Range - true prices
Average -0.461 0.282 0.66 0.155 0.942
5% -0.864 0.212 0.561 0.07 0.898
95% -0.138 0.358 0.747 0.255 0.977
RMSE 0.242 0.679 0.305 0.078 0.03

In the standard specification, M0, we observe that the posterior means of the

parameters are very close to the simulated value. When we incorporate the dif-

ferent estimators as exogenous variables in the volatility equation, the results are

in accordance with our expectations. The RV estimator using all intra-day prices
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contains the most information about the true value of volatility, which is reflected

by the lowest posterior means for the AR(1) parameter, δ, and the highest value for

β, while their sum remains close to 0.96. On the other extreme, the range estimator

is the least informative estimator, β is equal to 0.30 compared with the 0.70 and

0.82 for the RV 5min and RV 30sec, respectively.

Table 3.3 documents the RMSE and %MAE of the in-sample posterior means

of volatility,
√
ht. The presence of a variance estimator in the volatility equation

improves the estimation of volatility. In all the cases the RMSE and the %MAE

are below the ones obtained with M0 model. In particular, the RV 30sec estimator

provides the best fit for volatility, with a 42% RMSE gain over the standard case

of no RV estimators. Indeed, taking advantage of the highest frequency available

when prices are measured without noise results in a massive improvement of the

estimation of volatility.

Table 3.3 – In sample properties of
√
ht - Model 1 on noiseless returns

RMSE %MAE

M0 2.19 16.27
M1-RV 30sec - true prices 1.27 8.98
M1-RV 5min - true prices 1.42 10.16

M1-Range - true prices 2.06 15.28

We now turn to the performance of the estimators for estimating out-of-sample

volatility. For each draw of the parameters and the in-sample volatilities, the one-

day ahead forecast is obtained by using the log volatility equation in Model 1. Its

posterior mean is computed as :

ET (log hT+1) =
1

S

S∑
i=1

log h
(i)
T+1|T ,

log h
(i)
T+1|T = α(i) + β(i) logRVT + δ(i) log h

(i)
T + σ(i)

v vT

where S is the number of MCMC draws used to construct the posterior mean.

For multi-period forecasts we can forecast independently the RV estimators and
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plug them into the log volatility equation. This procedure requires to estimate a

model for each RV estimator. Alternatively, we use the same AR(1) specification

as in the basic SV model, which does not include exogenous variables in the latent

volatility equation and for the slope parameter we use the sum of the in-sample

estimation of β and δ. This approach assumes that the proxy estimators are un-

biased estimators of the latent volatility. Thus, multi-period forecast are obtained

with :

ET (log hT+k) =
1

S

S∑
i=1

log h
(i)
T+k|T ,

log h
(i)
T+k|T = α(i) + (β(i) + δ(i)) log h

(i)
T+k−1|T + σ(i)

v vT+k−1, k = 2, ..., 5

The results are showed in Table 3.4, RMSE values are multiplied by 103.

Table 3.4 – Out of sample evaluation of
√
ht - Model 1 on noiseless returns

Models All T + 1 T + 2 T + 3 T + 4 T + 5 1 week

RMSE
M1-RV 30 sec - true prices 2.00 1.26 1.70 2.01 2.30 2.47 3.89
M1-RV 5 min - true prices 2.12 1.46 1.85 2.13 2.41 2.58 4.22
M1-Range - true prices 2.67 2.11 2.36 2.59 2.95 3.18 5.46

%MAE
M1-RV 30 sec - true prices 14.87 9.41 12.59 15.46 17.90 19.00 13.19
M1-RV 5 min - true prices 16.17 10.99 13.99 16.55 19.02 20.28 14.33
M1-Range - true prices 23.59 17.09 20.12 23.64 27.28 29.82 21.69

We observe the same pattern as for in-sample volatility. Namely, the model with

RV 30sec performs the best through all forecasted horizons. However, note how the

accuracy of all out-of-sample forecasts decreases as the forecast horizon increases.

The performance evaluation considered so far has been based on the estima-

tion of Model 1 using a single-move sampler algorithm. Kim, Shephard, and Chib

(1998), KSC, propose an alternative algorithm based on a multi-move sampler for

the estimation of the basic SV model. They model log ε2t , as a discrete mixture of
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normals, augmenting the state space accordingly, which allows them to draw di-

rectly from the multivariate distribution of h. While the computational burden at

each draw is higher, the resulting draws are markedly less autocorrelated, notably

for σv, than for the single-move sampler. In Appendix 3.6.2 we compare the results

of JPR and KSC using simulated and real data.

We found that SV models estimated by single-move or multi-move MCMC can

deliver, period after period, posterior distributions of smoothed volatilities with

a very satisfactory degree of precision. The high autocorrelation that the single-

move algorithm presents does not indicate that the algorithm does not converge.

It is a sign that the algorithm may accumulate information at a slower rate than it

would do with a lower autocorrelation of draws. We will take the usual precautions

to assess the number of draws needed to obtain a desired precision for the MC

estimate of, say, the posterior mean. This is done simply by computing standard

errors robust to autocorrelation (see Geweke (1992)). In fact, low autocorrelation

may not even be a sign that an algorithm has converged ; it may be stuck in a

region of the parameter space while exhibiting low autocorrelation in that region.

With lower autocorrelation, a given desired precision for Monte Carlo estimates

requires fewer draws, but this has to be weighted by the required CPU time per

draw.

Performance with microstructure noise

We now evaluate the contribution of the competing RV measures to the esti-

mation of volatility when prices are measured with error. We add the TSRV 5min

estimator to the three RV measures considered above. These four estimators now

use the noisy prices. We also include the RV 30sec estimator computed with the

noiseless prices to contrast with the case in which the estimator can quasi perfectly

extract volatility information from the intra-day prices.

Table 3.5 presents the sampling performance of the posterior means of the

parameters. First, we note that price noise does not markedly diminish the sampling

performance of the basic model (M0) which does not use intra-day information. The
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Table 3.5 – Posterior parameter distribution - Model 1 on noisy returns

Models α β δ σv β + δ

True value -0.37 0.96 0.21

M0
Average -0.48 0.95 0.23
5% -0.76 0.92 0.17
95% -0.27 0.97 0.29
RMSE 0.19 0.02 0.04

M1-RV 30sec - true prices
Average -0.32 0.82 0.14 0.18 0.96
5% -1.03 0.64 0.02 0.07 0.89
95% 0.36 0.97 0.33 0.32 1.04
RMSE 0.43 0.16 0.82 0.07 0.05

M1-RV 30sec - noisy prices
Average 10.39 1.92 0.72 0.28 2.63
5% 7.06 1.32 0.61 0.20 2.11
95% 14.11 2.58 0.81 0.37 3.21
RMSE 11.00 1.04 0.25 0.09 1.71

M1-RV 5min - noisy prices
Average 2.43 0.82 0.51 0.24 1.33
5% 1.56 0.60 0.36 0.12 1.22
95% 3.39 1.06 0.65 0.35 1.45
RMSE 2.86 0.20 0.46 0.07 0.38

M1-TSRV 5min - noisy prices
Average -0.67 0.56 0.36 0.20 0.92
5% -1.30 0.42 0.19 0.09 0.86
95% -0.12 0.71 0.52 0.32 0.98
RMSE 0.48 0.41 0.61 0.07 0.05

M1-Range - noisy prices
Average -0.22 0.31 0.66 0.17 0.98
5% -0.52 0.23 0.56 0.08 0.94
95% -0.03 0.40 0.75 0.27 1.00
RMSE 0.20 0.65 0.30 0.07 0.02
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posterior distributions of parameters are the same as in the case of no noise (Table

3.2). However, performance deteriorates markedly when we use the RV estimators

on intra-day noisy returns ; the posterior means of the parameters are far from

the true ones. We also observe that sampling less frequently, sparse estimator RV

5min, or using an estimator that explicitly accounts for the noise, as with the TSRV,

improves posterior performance considerably. The range estimator also appears to

be robust to price noise ; the posterior parameters distributions are very similar to

those in Table 3.2 for the case of no noise.

We now compare the contribution of these estimators to the estimation of vola-

tility. Table 3.6 shows the results of the in-sample posterior means of
√
ht. Again,

the performance of volatility estimation with M0 model is not affected by price

noise. Both RMSE and %MAE are almost the same as when prices are measured

without error (Table 3.3). In contrast, in the case of RV 30sec with noisy prices, the

ability to estimate volatility has deteriorated considerably, the RMSE and %MAE

of the posterior means of volatility almost double with respect to the case with no

price noise. The sparse estimator is also affected but not as drastically. The M1-

TSRV model now provides the best in sample performance for volatility estimation,

RMSE and %MAE are the lowest among all estimators that use noisy prices. The

volatility performance obtained with the M1-Range model does not change much.

However, it is dominated by all of the M1-RV cases.

Table 3.6 – In sample properties of
√
ht - Model 1 on noisy returns

RMSE %MAE

M0 2.21 16.65
M1-RV 30sec - true prices 1.27 8.98

M1-RV 30sec - noisy prices 2.25 15.81
M1-RV 5min - noisy prices 1.82 13.58

M1-TSRV 5min - noisy prices 1.48 11.06
M1-Range - noisy prices 2.10 16.10

To see how the noise in prices affects the quality of the information contributed

by the RV estimators, Figure 3.1 plots the true annualized latent volatility (hori-
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zontal axis) against the in-sample posterior means (vertical axis) obtained with the

different models. We clearly observe how the posterior means are affected when one

uses all available intra-day noisy prices to compute the RV. There is a non-linear

effect on the estimation of volatility (top right plot). This non linearity is reduced

as one samples less frequently. It disappears when one uses an estimator robust to

microstructure noise such as TSRV (bottom left plot).

Table 3.7 reports on out-of-sample performance (RMSE values are multiplied

by 103). It shows that M1-TSRV improves volatility forecasts at all the forecasting

horizons considered (5 days). The largest improvement is for the one-day ahead

forecast, for which RMSE and %MAE are reduced by a half from the basic case.

As the forecasting horizon increases, the advantage of RV measures is reduced and

the forecasting performance is comparable to that obtained with the M1-Range

model.

Table 3.7 – Out of sample evaluation of
√
ht - Model 1 on noisy returns

Models ALL T + 1 T + 2 T + 3 T + 4 T + 5 1 week

RMSE
M0 3.00 2.89 2.93 2.97 3.08 3.14 6.40
M1-TSRV 5min - noisy prices 2.25 1.57 1.96 2.24 2.55 2.72 4.48
M1-Range - noisy prices 2.46 2.16 2.32 2.44 2.62 2.73 5.07

%MAE
M0 25.39 24.44 24.75 25.68 26.11 25.95 24.50
M1-TSRV 5min - noisy prices 18.09 12.32 15.41 18.45 21.56 22.70 16.31
M1-Range - noisy prices 20.51 18.25 19.40 20.92 21.82 22.17 18.98
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Figure 3.1 – True vs estimated annualized volatility

 

3.3.2 Performance with Model 2

We have shown how inference on volatility can be improved when using an

unbiased RV estimator as an explanatory variable in the volatility equation. We

now evaluate whether this benefit can be further enhanced by using a more flexible

model, where the estimation error of the non parametric variance estimators (RV)
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is explicitly modeled. We recall the basic specification for Model 2 (M2) :

rt =
√
htλtεt

logRVt = β0 + β1 log ht + σηηt

log ht+1 = α + δ log ht + σvvt+1

We evaluate the different estimators for the case in which prices are measured

with error. For each sample, we generate 30,000 draws from the MCMC algorithm

and discard the first 1,000 draws. Model 2 allows us to directly model the link bet-

ween the RV measure and the unobserved latent volatility, through parameters β0

and β1. Table 3.8, shows the parameter posteriors obtained for each case. The first

row, labeled True value, recalls the parameters used for the simulations ; the second

row, OLS value, reports the average OLS parameter estimate obtained for an AR(1)

model on the logarithm of the true variance (the average value of the parameters

are reported under column α, δ and σh), and a regression of the logarithm of the RV

estimator computed with all intra-day noiseless returns on the true variance (the

average value of the parameters are reported under columns β0, β1 and σrv). We

then compute the root mean square error of the posterior means of the parameters.

We notice that the average OLS parameter β0 is 0 and β1 is 1, consistent with the

fact that we are using a very informative and unbiased estimator computed with

noiseless returns.

The parameters are recovered with a good level of precision when we estimate

Model 2 using the RV 30sec estimator computed from the noiseless returns. In the

presence of microstructure noise, the AR(1) parameters are all similar and close to

the true value. However, the posterior parameters obtained for the measurement

equation are drastically different. The posterior means of β0, β1 and σrv reflect how

the model adjusts to extract the relevant information from the different estimators.

In the case of the RV estimator computed with all intra-day noisy returns we

observed a large deviation of β0 from zero and a low β1 of only 0.14. For the sparse
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Table 3.8 – Posterior parameter distribution - Model 2 on noisy returns

Models α δ σh β0 β1 σrv
True value -0.37 0.96 0.21
OLS value -0.40 0.96 0.21 0.00 1.00 0.05

M2-RV 30sec - true prices
Average -0.36 0.96 0.20 0.02 1.00 0.07
5% -0.47 0.95 0.18 -0.93 0.90 0.06
95% -0.25 0.97 0.23 0.74 1.08 0.09
RMSE 0.06 0.01 0.01 0.36 0.04 0.02

M2-RV 30sec - noisy prices
Average -0.46 0.95 0.19 -5.49 0.14 0.06
5% -0.63 0.93 0.16 -5.68 0.12 0.06
95% -0.31 0.97 0.23 -5.29 0.16 0.06
RMSE 0.14 0.02 0.04 5.50 0.86 0.01

M2-RV 5min - noisy prices
Average -0.44 0.95 0.21 -3.48 0.54 0.17
5% -0.58 0.94 0.18 -4.05 0.48 0.16
95% -0.30 0.97 0.24 -2.91 0.60 0.18
RMSE 0.11 0.01 0.03 3.51 0.46 0.12

M2-TSRV 5min - noisy prices
Average -0.42 0.95 0.22 0.29 1.04 0.22
5% -0.55 0.94 0.19 -0.59 0.94 0.20
95% -0.29 0.97 0.24 1.16 1.13 0.23
RMSE 0.10 0.01 0.02 0.75 0.08 0.17
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5min estimator, β0 is still different from zero but the difference is smaller than in

the previous case, and we observe a higher value of β1, 0.54. Note that σrv increased

from 0.06 to 0.17. The last RV estimator, TSRV, shows a significative improvement

in the performance of the estimation of parameter β1, 1.04. The deviation of β0

from 0 is considerably reduced, while σrv increases to 0.22.

We now analyze the contribution of the competing RV measures to volatility es-

timation, via Model 2. Table 3.9 documents the performance of in-sample volatility

estimation for Model 2 algorithm and the different RV estimators. If we compare

these results with those for Model 1 in Table 3.6, we notice that both measures,

RMSE and %MAE, are smaller for Model 2 for all the cases. This indicates that

Model 2 exploits the information content on the realized volatility estimators better

than Model 1.

Table 3.9 – In sample properties of
√
ht - Model 2 on noisy returns

RMSE %MAE

M0 2.21 16.65
M2-RV 30sec - true prices 0.45 2.99

M2-RV 30sec - noisy prices 2.67 14.41
M2-RV 5min - noisy prices 1.57 9.82

M2-TSRV 5min - noisy prices 0.88 6.22

Table 3.10 presents the performance of the competing out-of-sample estimates

of volatility under Model 2 (RMSE values are multiplied by 103). If we compare

these results to the ones obtained with Model 1, shown in Table 3.7, we observe

that the use of the RV estimators considerably improves the prediction of volatility

as far as 5 days ahead for both models. The performance diminishes as we increase

the number of days ahead in the forecast, especially for Model 1. For example,

the %MAE obtained using TSRV estimator in Model 1 increased from 12.3 to 22.8,

while in Model 2 it increased from 12.2 to 19, when evaluating one-day ahead versus

five-day-ahead forecasted volatility.
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Table 3.10 – Out of sample evaluation of
√
ht - Model 2 on noisy returns

Models All T+1 T + 2 T + 3 T + 4 T + 5 1 week

RMSE
M0 3.00 2.89 2.93 2.97 3.08 3.14 6.40
M2-RV 30sec - true prices 1.97 1.41 1.77 1.99 2.23 2.33 3.87
M2-RV 30sec - noisy prices 2.68 2.44 2.59 2.64 2.80 2.90 5.62
M2-RV 5min - noisy prices 2.24 1.86 2.10 2.22 2.41 2.56 4.54
M2-TSRV 5min - noisy prices 2.10 1.58 1.90 2.11 2.34 2.45 4.19

%MAE
M0 25.39 24.44 24.75 25.68 26.11 25.95 24.50
M2-RV 30sec - true prices 14.38 9.64 12.59 14.93 17.08 17.66 12.59
M2-RV 30sec - noisy prices 21.87 19.77 20.97 21.90 23.26 23.44 20.38
M2-RV 5min - noisy prices 18.25 15.26 16.83 18.66 19.89 20.58 16.59
M2-TSRV 5min - noisy prices 16.16 12.22 14.42 16.58 18.60 18.95 14.59

3.3.3 Performance with bivariate models

We are now interested in comparing Model 1 and Model 2 when we consider

two volatility proxies using a bivariate version of each model. We use the simulated

500 samples of 1,500 observations of daily returns generated with noise. Our first

volatility proxy is the TSRV 5min estimator built with the noisy intra-day returns

and our second volatility proxy (X2) is built using the following equation :

X2t = γ0 + γ1 log h∗t + σx2εt (3.6)

where h∗t is the true variance and εt ∼ N(0, 1). We set the parameters value to

be : (γ0, γ1, σx2) = (−0.5, 0.81, 0.07). The choice of this particular set of values

responds to the empirical results we find when using an alternative proxy estimator

for volatility in Model 2, called the implied volatility. The parameters we use are

similar to the posterior mean obtained when applying Model 2 on the S&P500

returns and using an implied volatility estimator as the proxy variable (Section

3.4.5 give more detail about the data and the empirical findings when using an
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implied volatility estimator).

The two proxies are very similar, the average correlation across the 500 samples

is 0.94. In Table 3.11 we compare the average OLS parameter estimator across the

500 samples when regressing each proxy against the true log volatility variable. We

observe that the TSRV-5min estimator seems to be a relatively better proxy for

the true volatility as its constant parameter is zero, slope parameter is one and

have less volatility than X2.

Table 3.11 – Average OLS estimation for proxies

Proxy β0 β1 σtsrv γ0 γ1 σX2

TSRV-5min 0.0 1.0 0.05
X2 -0.46 0.81 0.07

We estimate bivariate Model 1 and Model 2. The posterior parameters distri-

bution of Bivariate Model 1 are presented in Table 3.12, we include in the table the

results of univariate Model 1 when using only TSRV -5min proxy for comparison.

Table 3.12 – Posterior parameter distribution - M1 bivariate

Models α β θ δ σv β + θ + δ

True value -0.37 0.96 0.21

M1 - TSRV 5min
Average -0.67 0.56 0.36 0.20 0.92
5% -1.30 0.42 0.19 0.09 0.86
95% -0.12 0.71 0.52 0.32 0.98
RMSE 0.48 0.41 0.61 0.067 0.05

M1 - TSRV 5min - X2
Average -0.17 0.21 0.67 0.19 0.19 1.07
5% -0.87 -0.05 0.32 0.03 0.07 0.97
95% 0.51 0.47 1.05 0.37 0.32 1.18
RMSE 0.45 0.76 0.34 0.78 0.06 0.13

We observe that the slope parameters associated to the new proxy X2,(θ), is



122

higher compared the slope parameter of TSRV, (β), and the AR(1) parameter,

(δ), for M1-TSRV-X2 model. Besides, the posterior mean of the sum of the three

parameters corresponding to the proxies and to the volatility is greater than 1

which will make difficult to rely on the multi-period forecasts of this model if we

use (β+ θ+ δ) as the AR(1) coefficient for multi-period forecasts, as the we do not

have a stationary prediction model.

With respect to Bivariate Model 2, Table 3.13 presents the posterior distribution

of the parameters and includes results from the univariate cases when estimating

only with TSRV and only with X2. The posterior distribution of the parameters

of the volatility equation are similar for the 3 cases presented and close to the true

values. Also, the posterior parameter distribution of each volatility proxy equation

is in line with their true values.

Now, we compare the models with respect to their ability to estimate volatility.

Table 3.14 presents the in-sample fit of volatility. The estimation of in-sample

volatility improves with the introduction of the X2 proxy in Model 1 and Model 2.

The improvement for Model 2 is greater than for Model 1. However, we notice, that

when we estimate univariate Model 2 with only X2 we obtain a very similar in-

sample fit of volatility as when we use the bivariate version. These results indicate

that there is no much more information from combining both highly correlated

proxies and the proxy X2 seems to be a relative better proxy than the TSRV

estimator.

In terms of out-of-sample volatility fit, Table 3.15 presents the out-of-sample

performance of Bivariate Model 1 and Model 2, as well as their corresponding

univariate version for comparison. Bivariate Model 2 outperforms bivariate Model

1 for all periods, this is mainly due to the inability to draw effective out-of-sample

forecasts with bivariate Model 1. The sum of parameters implies explosive behavior.

With only TSRV, Model 1 parameters are “reasonable” and its performance out-

of-sample is adequate.

From these performance evaluations, we can conclude that multivariate versions

of Model 2 extrapolate the information content on different volatility proxies in a
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Table 3.13 – Posterior parameter distribution - M2 bivariate

Models α δ σv β0 β1 ση1 γ0 γ1 ση2
True value -0.37 0.96 0.21 -0.5 0.81 0.07
OLS value -0.4 0.96 0.21 0 1 0.05 -0.46 0.81 0.07

M2 - TSRV 5min
Average -0.42 0.95 0.22 0.29 1.04 0.22
5% -0.55 0.94 0.19 -0.59 0.94 0.20
95% -0.29 0.97 0.24 1.16 1.13 0.23
RMSE 0.10 0.01 0.02 0.75 0.08 0.17

M2 - X2
Average -0.38 0.96 0.20 -0.18 0.84 0.08
5% -0.50 0.95 0.18 -0.76 0.78 0.07
95% -0.27 0.97 0.22 0.43 0.91 0.09
RMSE 0.07 0.01 0.02 0.47 0.05 0.01

M2 - TSRV 5min - X2
Average -0.39 0.96 0.20 0.51 1.06 0.22 -0.23 0.84 0.08
5% -0.50 0.95 0.18 -0.20 0.98 0.22 -0.78 0.78 0.07
95% -0.27 0.97 0.22 1.26 1.14 0.23 0.36 0.90 0.08
RMSE 0.07 0.01 0.01 0.67 0.08 0.18 0.43 0.05 0.01

Table 3.14 – In sample fit
√
ht : Model 1 and 2 bivariate

RMSE %MAE

M1 - TSRV 5min 1.48 11.06
M1 - TSRV 5min - X2 1.31 9.58

M2 - TSRV 5min 0.88 6.22
M2 - X2 0.56 3.98

M2 - TSRV 5min - X2 0.52 3.73
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Table 3.15 – Out of sample fit
√
ht : Model 1 and 2 bivariate

Models All T+1 T + 2 T + 3 T + 4 T + 5 1 week

RMSE
M1- TSRV 5min 2.25 1.57 1.96 2.24 2.55 2.72 4.48
M1- TSRV 5min - X2 6.09 1.35 3.83 6.11 7.58 8.63 9.87

M2- TSRV 5min 2.10 1.58 1.90 2.11 2.34 2.45 4.19
M2- X2 1.90 1.33 1.66 1.90 2.16 2.28 3.67
M2- TSRV 5min - X2 1.90 1.32 1.66 1.91 2.16 2.28 3.67

%MAE
M1- TSRV 5min 18.09 12.32 15.41 18.45 21.56 22.70 16.31
M1- TSRV 5min - X2 46.93 10.22 30.38 52.19 66.26 75.61 36.66

M2- TSRV 5min 16.16 12.22 14.42 16.58 18.60 18.95 14.59
M2- X2 14.17 10.06 12.34 14.44 16.65 17.35 12.31
M2- TSRV 5min - X2 14.14 9.93 12.26 14.48 16.68 17.36 12.32

better way than multivariate versions of Model 1 which are reflected in a better

in-sample and out-of-sample fit of volatility.

3.4 Empirical Application

We implement Model 1 and 2 on actual data to evaluate the contribution of the

competing RV measures to the estimation of volatility. We are interested in analy-

zing the parameter posteriors across the fitted (smoothed) and predicted volatilities

across models. Our analysis includes the financial crisis of 2008-2009 during which

volatility was high and highly variable.

3.4.1 Data

The data consists of three daily exchange rates and four daily stock indices for

the period between January 2, 2006 and March 1, 2009.
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Table 3.16 – Description of the data

No. obs Std. Dev. RK

Currencies
British Pound 810 10.9 11.6
Euro 809 10.5 10.7
Japanese Yen 809 12.6 12.9

Indices
S&P 500 794 26.7 20.4
TSE 778 26.1 19.0
Nikkei 250 743 31.3 18.3
FTSE 100 782 24.5 18.2

We use data from the “Oxford-Man Institute’s realized volatility library” pro-

duced by Heber, Lunde, Shephard, and Sheppard (2009). It contains daily returns

and RV measures constructed with intra-day prices. Specifically, we use their daily

returns and the realized kernel (RK) estimator for each of the series analyzed in

our study. These daily realized kernel estimators are computed in tick time from

all available intra-day data, after cleaning 15, using the methodology of Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2006). RK estimators are similar to the

TSRV estimator seen above, as they are robust to some microstructure noise. Table

3.16 reports the annualized returns and realized kernels, and the number of obser-

vations for each series in our application. We observe that the annualized squared

returns are much higher than the annualized realized kernel for the stock indices

due to the fact that the RK estimators use only intra-day prices, excluding the

overnight return.

In addition to the RK estimator we consider another popular estimator called

the implied volatility estimator, which uses option prices to imply the (risk-neutral)

expectation of future volatility. We use this variable for the estimation of S&P 500

volatility. The implied volatility index is obtained from the Chicago Board Options

Exchange Market Volatility Index (VIX), based on a highly liquid options market.

15. See Heber, Lunde, Shephard, and Sheppard (2009) for explanation of the cleaning process.
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3.4.2 Odds ratio

The MCMC draws allow us to compute posterior odds ratios of the standard

SV model to the SV-RV model. The posterior odds ratio is the product of the ratio

of the marginal densities of the data, called Bayes factor (BF), times the prior odds

ratio :

P (M1|D)

P (M2|D)
=
P (M1)

P (M2)

Marg.Likelihood|M1

Marg.Likelihood|M2

In Model 1, the SV model is nested within the SV-RV model when β = 0,

this allows us to use the Savage-Dickey density approach to compute the ratios

BFSV |SV−RV :

BFSV |SV−RV =
p(yt|SV )

p(yt|SV −RV )
=
p(α1 = 0|yt, SV −RV )

p(α1 = 0|SV −RV )

p(α1 = 0|SV − RV ) is the ordinate of the prior and p(α1 = 0|yt, SV − RV )

is the ordinate of the posterior. Here both ordinates correspond to a student-t

distribution. See Jacquier, Polson, and Rossi (2004) for proofs. For the exchange

rates, we use the basic specification of the models, that is, no correlation and not fat

tail. We compare SV to SV-RV model. For the stock indices we use the correlation

version of each model, that is, we compare SVC to SVC-RV model. Table 3.17

reports the logarithm of the posterior odds ratios : BFSV |SV−RV , BFSV C|SV C−RV

estimated for the entire period (January 2006 to March 2009). For all currencies

and stock indices the odds ratios are in favor of the model with realized volatility.

Sequential estimation : Filtering

The above results are based upon smoothed volatilities. The MCMC algorithms

produce p(ht|yT ) and p(θ|yT ), where yT ≡ (y1, . . . , yT ), and θ, ht are the model pa-

rameters and the variance at time t. For a given sample of data, however, the

econometrician may want, for each time t, the posterior density of both filtered vo-
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Table 3.17 – Logarithm of posterior odds ratio

Logarithm of odds ratio

Currencies
British Pound -27.57

Euro -9.70
Japanese Yen -3.64

Indices
S&P 500 -38.97

TSE -73.31
Nikkei 250 -134.01
FTSE 100 -138.65

latilities and parameters p(ht|yt) and p(θ|yt). Running the MCMC sampler again

each time a new observation (yt+1) becomes available is a feasible, but compu-

tationally unattractive, solution. Recent research has, therefore, been devoted to

filtering algorithms for non-linear state space models. Early filtering algorithms

solve the problem conditional on a value of θ. This is unattractive for two reasons.

First, they do not incorporate the uncertainty on θ into the predictive density of

ht. Second, the most likely value of θ on which to condition, comes from the poste-

rior distribution of a single MCMC algorithm run on the whole sample. However,

conditioning on the information from the entire sample is precisely what one wants

to avoid when drawing from p(ht|yt). To solve this problem, Caravalho, Johannes,

Lopes, and Polson (2010) (CJLP) introduced a particle learning algorithm.

We applied the Particle Learning (PL) algorithm to estimate the Model 1 spe-

cification with no correlations sequentially on the three currencies and to compute

the sequential odds ratio. We present the algorithm in Appendix 3.6.3. It is impor-

tant to understand how crucial the number of particles used is in these algorithms.

We estimate the PL filter with 5, 10, 20 and 40 thousand particles and estimate

the posterior odds for each t to compare the SV and SV-RV model. In Figure 3.2,

we compare the logarithm of the odds ratio at the end of the sample with the lo-

garithm of the MCMC odds ratio. The horizontal line correspond to the log of the
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odd ratio calculated with the MCMC algorithm. Note how the PL-derived odds

ratios converge very slowly to the MCMC odds ratio as the number of particles

increases. This is a sign that the posterior distributions in the filtering algorithm

may require a very large number of particles to be deemed reliable.

Figure 3.2 – Sequential odds ratio : British Pound - PL algorithm on M1 model

In Figure 3.3 we compare the sequential odds ratios obtained with the sequential

estimation of MCMC algorithm and with the PL algorithm. The PL filter are based

on 80,000 particles and the MCMC algorithm based on 50,000 draws. We see that

for the three currencies, the log odds ratio decreased more since September 2008,

which coincide with the start of the financial crisis. We also note that the PL and

MCMC estimation of the odds are close, however, the odds ratios obtained with

the MCMC algorithm are more volatile.
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Figure 3.3 – Logarithm of sequential odds ratio calculated with MCMC algorithm and PL filter on currencies

In Table 3.18 we compute the average of the sequential odds ratios obtained

with the MCMC algorithm for all series. The average of the sequential odds are

calculated for two periods. The first period, correspond to the pre-crisis period

(January 2, 2006 to August 27, 2012) and the second period includes the entire

period (January 2, 2006 to March 1, 2009). Sequential estimation starts in January

2, 2008. The odds ratios in favor of RV increase for all currencies and stocks for
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the financial crash period : October 2008 - March 2009.

Table 3.18 – Average logarithm of posterior odds Ratio by period

Aug. 2,2006 to Aug. 29,2008 to
Aug. 28,2008 Mar. 1,2009

Currencies
British Pound -8.38 -28.25

Euro -0.37 -4.20
Japanese Yen -2.32 -9.25

Indices
S&P 500 -28.76 -49.07

TSE -11.85 -46.47
Nikkei 250 -73.43 -120.84
FTSE 100 -60.44 -125.65

3.4.3 Parameter Inference

For all models considered, we use the basic specification of no correlation or fat

tails for currencies and the case with correlated errors for stocks. The results are

based on 50,000 draws after discarding the first 5,000 draws. Posterior parameter

distribution form M0, M1 and M2 models are presented in Appendix 3.6.4. Table

3.24 shows the result for M0 model. The volatility persistence parameter is close

to one for all series and there is a strong negative correlation value for the stock

indices with posterior means that vary from -0.72 (Nikkei 250) to -0.57 (S&P 500).

Table 3.25 presents the posterior parameter distribution for Model 1 using the

RV estimator as the volatility proxy. The posterior mean of β + δ across all series

is relatively lower than their corresponding δ parameter obtained with M0 model.

The posterior mean of β in the currency series is considerably lower than the values

found for the stock indices. The posterior confidence intervals of α, β and δ for the

stock indices show these are considerably more volatile compare to the obtained for

currencies. For all stocks the confidence intervals include the value of 0 for δ and the

95% posterior percentile for the constant parameter α is considerable high for Nikkei
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and FTSE. With respect to the correlation parameter, the posterior distribution

of ρ shows that this coefficient is highly variable with very high posterior density

near zero when we incorporate the RV estimator in the volatility equation. It seems

that the interaction of the lagged RV estimator and lagged latent volatility cancel

the correlation effect measured as corr(vt+1, εt) = ρ. These findings suggest that

Model 1 with correlated errors for the stocks seems to be unstable.

Finally, Table 3.26 presents the posterior parameter distribution for Model 2

using the RV estimator as the volatility proxy. The posterior mean value of δ is close

to one but slightly lower than that obtained with the basic SV model for all series.

For β1, the persistence parameter of the proxy volatility, its posterior mean varies

from 0.89 (Nikkei) to 1.01 (TSE) ; for σrv, the posterior mean for stocks is higher

than for currencies. Contrary to the results with Model 1, the posterior distribution

of ρ for the indices shows evidence of a negative correlation between the returns

and latent volatility, as in the case of the basic correlated model, however the value

is lower. Thus, Model 2 with RV seems to be more appropriate than Model 1 with

RV when analyzing return series that are known to present a leverage effect.

3.4.4 Volatility estimation

We compare the in-sample volatility estimation across models for the different

series. Scatter plots of the annualized posterior mean of in-sample volatility estima-

ted with Model 1 against the standard model, Model 2 against the standard model

and Model 2 against Model 1 are presented in Figures 3.4 and 3.5. The in-sample

posterior volatilities are based on the full sample for each series. In general, we see

that estimations of volatility are relatively similar across models when volatility is

low, but for very high volatility periods both Model 1 and Model 2 seems to have

higher estimates compare to the basic model. Furthermore, Model 1 and Model 2

show discrepancies in the value of volatility when this is high.
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Figure 3.4 – Comparison of in-sample volatility fit across models : currencies
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Figure 3.5 – Comparison of in-sample volatility fit across models : stocks

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.
0

0
.
4

0
.
8

1
.
2

 M1 vs M0

S
P

5
0

0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.
0

0
.
4

0
.
8

1
.
2

 M2 vs M0

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.
0

0
.
4

0
.
8

1
.
2

 M2 vs M1

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0  M1 vs M0

T
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0  M2 vs M0

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0  M2 vs M1

0.0 0.5 1.0 1.5

0
.
0

0
.
5

1
.
0

1
.
5

 M1 vs M0

N
I
K

K
E

I

0.0 0.5 1.0 1.5

0
.
0

0
.
5

1
.
0

1
.
5

 M2 vs M0

0.0 0.5 1.0 1.5

0
.
0

0
.
5

1
.
0

1
.
5

 M2 vs M1

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

 M1 vs M0

F
T

S
E

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

 M2 vs M0

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

 M2 vs M1



134

With respect to the out-of-sample volatility fit, Figures 3.6 and 3.7 presents the

scatter plots of the annualized posterior mean of one-day forecasts and Figures 3.8

and 3.9 presents scatter plots of the annualized posterior mean of one-week ahead

volatility forecasts. In the four figures, the panels in the left side show volatility

estimated with Model 1 against the standard model, the panels in the middle show

volatility estimated with Model 2 against the standard model and the panels on

the right show volatility estimated with Model 2 against Model 1. Out of sample

volatility forecasts are based on sequential estimation of the models for the period

from January 2008 to February 2009 (around 300 observations per series).

For the one-day-ahead volatility forecast, Model 1 and Model 2 have different

estimations with respect to the standard model for all series. Between Model 1 and

Model 2, it seems that estimations are more similar with the exception of Nikkei

for which Model 1 estimates higher volatilities than Model 2 and the standard

model. For the longer forecast period, one week, we observe that Model 1 give very

different volatility forecasts for all stock series than the basic and Model 2, the

estimations are in most of the cases much higher, specially for Nikkei and FTSE.

As we observed in the evaluation of the posterior distribution of the parameters for

Model 1, parameters are unstable with some very large estimates of the constant

parameter α for the case of Nikkei and FTSE.

Given the different forecasts obtained with Model 1 for the stock’s volatilities,

we evaluate the sensitivity of the results to the prior specification of the constant

parameter α. In general, as described in Section 3.2.3 we use very flat priors for all

parameters. In particular, for the parameter α we set its prior to be N(0, 100). We

now adjust the variance of the prior from 100 to 1 and re-estimate Model 1 for the

stocks. Figure 3.10 and 3.11 show the one-day and one-week ahead volatility esti-

mations obtained with the tighter prior. We observe that the volatility’s forecasts

improve for Model 1, although we still see a bias for the estimation of one-week

ahead forecast of Nikkei’s volatility.
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Figure 3.6 – Comparison of one day ahead volatility forecast across models : currencies
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Figure 3.7 – Comparison of one day ahead volatility forecast across models : stocks
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Figure 3.8 – Comparison of one week ahead volatility forecast across models : currencies
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Figure 3.9 – Comparison of one week ahead volatility forecast across models : stocks
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Figure 3.10 – Comparison of one day ahead volatility forecast across models : stocks - new prior
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Figure 3.11 – Comparison of one week ahead volatility forecast across models : stocks - new prior
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The comparison of the in-sample and out-of-sample volatility estimations have

allowed us to identify some of the discrepancies across models in terms of volatility

estimation and forecasting, but we can not say if one model is better than the other

as we do not know the true volatility. We do observe the returns, though, so we

use them to compute the hit rate of 95% confidence intervals for the 1-step and

one week ahead future log-returns using each model. The relevant out of sample

density is :

p(rt+k|It) =

∫
p(rt+k|ht+k)p(ht+k|It)dht+k

We use the sequential estimation of each model to draw the returns from its

conditional predictive distribution given volatility. The accuracy of the hit rates

is evaluated using an unconditional coverage test as used in Chib, Nardari, and

Shephard (2006) :

LRuc = 2
[
log(α̂γ(1− α̂)T−γ)− log(αγ(1− α)T−γ)

]
where α is 5%, α̂ is the estimated proportion of observations outside the 95%

confidence interval, and γ is the number of hits. The null hypothesis of this test

is α̂ = α and the test statistic is distributed asymptotically as χ2(1). Table 3.19

reports the average hit rate based on approximately 300 observations per series.

Columns 1 to 3 report the average hit rate (in percentage) for the standard model,

Model 1 and Model 2, respectively. Columns 4 to 6 report the p-value for the

unconditional coverage test for the three models. None of the models performs

uniformly better. For the one-day-ahead hit rate of the 95% confidence intervals of

the log returns, the basic model provides a higher level of accuracy for the Japanese

Yen and the Nikkei index, Model 1 is more precise for TSE and FTSE indices and

Model 2 is more accurate for the British Pound, Euro and S&P 500 index. For the

one-week-ahead hit rate, Model 1 performs the worst for all stock indices while

Model 2 is equal or more accurate than Model 1 for all series but for the TSE

index.
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Table 3.19 – Currencies and stocks : hit rate

Hit rate p-values
Series M0 M1 M2 M0 M1 M2

One day ahead
British Pound 8.36 2.01 5.02 0.01 0.01 0.99
Euro 8.72 6.71 5.70 0.01 0.20 0.58
Japanese Yen 5.03 6.04 6.38 0.98 0.42 0.30
S&P 500 7.07 6.72 6.05 0.13 0.20 0.39
TSE 9.36 5.99 10.11 0.00 0.47 0.00
Nikkei 250 4.31 6.03 6.90 0.62 0.48 0.21
FTSE 100 7.38 5.17 4.43 0.09 0.90 0.66

One week ahead
British Pound 8.85 3.05 6.78 0.00 0.10 0.18
Euro 8.88 7.82 7.82 0.00 0.04 0.04
Japanese Yen 5.44 4.76 5.44 0.73 0.85 0.73
S&P 500 1.79 1.79 3.58 0.00 0.00 0.25
TSE 6.84 1.52 8.37 0.19 0.00 0.02
Nikkei 250 3.51 0.00 3.51 0.28 0.00 0.28
FTSE 100 3.37 0.00 4.49 0.20 0.00 0.70

3.4.5 S&P 500 : Realized or Implied Volatility ?

In this subsection, we study with more detail the volatility estimation of the

S&P 500 index for which we have two alternative volatility proxies : the realized

volatility estimator (RV) and the implied volatility index (VIX). We want to eva-

luate the difference in the estimation when using the RV and/or the VIX estimator

with particular interest in learning from the information given by both estimators

during the financial crisis of 2008-2009. The top panel in Figure 3.12 shows the

time series plot of the two volatility proxies. The bottom panel shows the daily re-

turn. The vertical line indicates the starting point for our analysis of the sequential

estimation, July 15, 2008. This starting point corresponds to a time prior to the

crisis period.

Using the sequential estimation of Model 1, we compute sequential odds ratio to
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Figure 3.12 – Plot of S&P 500, Realized Volatility and Implied Volatility Index
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compare Model 1 with VIX against Model 1 with VIX and RV (M1− V IX|M1−
RV − V IX), and Model 1 with RV against Model 1 with VIX and RV (M1 −
RV |M1 − RV − V IX). Figure 3.13 presents the sequential odds ratios for each

case. There is strong evidence in favor of the model with implied volatility in the

presence of the RV estimator, and there is weak or even negative evidence for the

RV estimator in the presence of the VIX. This suggests that the VIX may contain

all the information in the RV estimator and more.

The performance evaluation of Section 3 shows that Model 2 extrapolates the

information content on different volatility proxies in a better way than multivariate

versions of Model 1. Therefore, we now use the sequential estimation of univariate

and bivariate formulations of Model 2 to analyze the differences and consisten-

cies with respect to parameters and volatility estimation during the crash period

across alternative specifications of Model 2. First, we need to know if the crisis per-

iod affects the persistence parameter δ. Figure 3.14 plots the sequential posterior

distributions of δ for the standard model(M0) and the alternative two univariate

specifications (M2-RV, M2-VIX). The two top panels shows the sequential estima-

tion of δ for the basic model (M0). The bottom left panel shows the same for the

the M2-RV model and the bottom left for the M2-VIX model. It clearly shows that

incorporating the RV estimator reduces the posterior persistence of volatility, while

the opposite occurs when incorporating implied volatility. The persistence obtained

with RV in the model is far less than that with the VIX. Finally, the plots show

that the posterior persistence increases through the financial crisis period for all

models.

Figure 3.15 reports the sequential posterior distribution of the measurement

equation parameters for RV and the VIX, namely β1 and ση. The two top panels

show the sequential estimation of β1 for the M2-RV model (left panel) and M2-VIX

model (right panel). The bottom panel shows the estimation of ση for the the model

M2-RV (left panel) and M2-VIX (right panel).

The posterior slope of the RV equation is quite stable during the entire period

and higher than that obtained for the VIX equation. The slope of the VIX equation
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Figure 3.13 – Logarithm of sequential odds ratio : S&P500
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Figure 3.14 – S&P 500 : δ.
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Figure 3.15 – S&P 500 : β1 and ση
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decreases after the crash period. The standard deviation of the estimation error σε

is much higher for RV than for VIX. With resect to the correlation parameter, we

find that the M2-RV model estimates a stable ρ parameter along the the entire

sample with posterior mean close to -0.5. However, the M2-VIX model estimates

that the posterior mean of the correlation parameter is close to zero. A possible

explanation for the null correlation with the M2-VIX model is that the VIX esti-

mator is based on future expectations of volatility and may be incorporating the

information capture in the correlation parameter.

Next, we evaluate how the posterior distribution of parameters changes when

we estimate Model 2 incorporating the RV and the VIX estimators at the same

time (M2-RV-VIX). Figure 3.16 plots the sequential estimation of the persistence

parameter of the log volatility equation. The evolution of the delta parameter is very

similar to that obtained when we just incorporate the VIX estimator. That is, the

introduction of the RV estimator in addition to the VIX estimator does not change

the persistence parameter. The posterior distribution of the slope and the volatility

parameters of the two proxy equations are also very similar to their corresponding

values when using only one proxy at a time. The correlation parameter is very

similar to that obtained with only the VIX variable, that is it is close to null 16.

What are the implications for the S&P 500 volatility estimation ?. Is the higher

error variance of the RV estimators transmitted to the posterior density of the

latent volatility ?. Figure 3.17 plots the posterior mean of the latent volatility,
√
ht

and its posterior 5% and 95% percentiles for the basic model (top left panel), M2-

RV model (top right panel), M2-VIX (bottom left panel) and M2-RV-VIX (bottom

right panel). The black solid line corresponds to the posterior mean and the green

dotted lines are the posterior 5% and 95% percentiles. The period plotted is from

January 3, 2006 to August 28, 2008. The higher volatility of the RV measure does

translate into a more variable latent volatility posterior density. In contrast, the

bottom left plot shows that the VIX imparts its persistence. The M2-RV-VIX model

16. We estimated the M2-VIX and the M2-RV-VIX models without correlation and obtained
very similar results for the parameters and volatility estimations.
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Figure 3.16 – S&P 500 : δ for bivariate Model 2

gives very similar estimates to the M2-VIX model.
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Figure 3.18 compares the posterior means of annualized volatility for the M2-

RV and the M2-VIX models against the standard model. The left panel shows a

scatter plot of the volatility estimated with M2-RV model against the basic model.

Right panel is the scatter plot of the M2-VIX volatility versus the basic model.

The incorporation of RV increases posterior volatilities when they are large, and

decreases them when they are small. In contrast, the incorporation of VIX does not

appear to have a dramatic effect on the formulated posterior density of volatility.

Consider now the crash period itself : August 28,2008 to November 19, 2008.

Figure 3.19 displays volatility posterior mean, using M0, M2-RV, M2-VIX and

M2-RV-VIX models for this period. RV and VIX strongly disagree on the path of

the past volatility between the beginning of the crisis period and where we are on

November 19, 2008.

In terms of out-of-sample forecasts, Figure 3.20 presents scatter plots of one-

day-ahead and one-week-ahead volatility forecasts for the M2-RV, M2-VIX and

M2-RV-VIX models against the standard model. As in the in-sample estimation

of volatility, there are discrepancies in the out-of-sample estimates between the

M2-RV and M2-VIX model against the basic model and between them. The top

panels show one-day ahead posterior volatility forecasts and the bottom panels

show one-week-ahead volatility forecasts. The left panels show a scatter plot of the

volatility estimated with M2-RV model against the standard model. Middle panel

is the scatter plot of the M2-VIX volatility versus the standard model and the right

panels show the scatter plot of the M2-VIX volatility versus the standard model.

The forecasts obtained with M2-RV-VIX are very close to those obtained with the

M2-VIX model.
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Figure 3.17 – S&P 500 : annualized volatility estimation with M0, M2-RV and M2-VIX models
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Figure 3.18 – S&P 500 : posterior annualized volatility estimation comparison
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Figure 3.19 – S&P 500 : In sample volatility estimation
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Figure 3.20 – S&P 500 : Out of sample volatility estimation
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Table 3.20 compares the hit rate of 95% confidence intervals for the one-day

and one-week ahead future log-returns across models. The models that incorporate

information from volatility proxies (M2-RV, M2-VIX, M2-RV-VIX) never perform

worse than the standard model (M0). In particular, the bivariate model M2-RV-

VIX is more accurate for the one-day-ahead log return forecast while the M2-RV

is better for the one-week-ahead forecast.
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Table 3.20 – S&P500 : hit rate

Hit rate p-values
S&P 500 One-day-ahead One-week-ahead One-day-ahead One-week-ahead

M0 7.01 1.96 0.28 0.05
M2-RV 7.01 5.88 0.28 0.63
M2-VIX 6.37 3.92 0.45 0.53
M2-RV-VIX 5.10 3.27 0.96 0.30

3.5 Conclusions

We evaluate the information contributed by (variations of) realized volatility

to the forecasting of volatility when prices are measured with and without error.

We use two econometric specifications to incorporate realized volatility into the

inference on latent volatility. We write the MCMC algorithms for these models.

The performance results show that the ability of realized volatility to improve

forecasts is seriously affected by price noise, and highlight the importance of using

adjustments that are robust to the presence of noise, such as the two scaled realized

volatility estimator. We also find that the second econometric specification, where

the volatility proxy is explicitly linked to the latent volatility, results in better in-

sample and out-of-sample estimation of volatility than the first specification. This

is especially true for multi period forecasts.

The empirical analysis shows that the odds ratios favor the use of the realized

volatility estimator for most indices and currencies. However, when using out-of-

sample estimations of volatility to compute the 95% hit rate of confidence intervals

of the log returns not one model performs uniformly better across all series. We

study the modeling of the S&P 500 volatility in more detail. We compare the

information contents on realized volatility and implied volatility during the financial

crisis 2008-2009. We find that the odds ratios favor the model with implied volatility

(VIX) against the model with realized volatility. Realized volatility has a high level

of variability which is transmitted to the estimation of the latent volatility. On the
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other hand, a higher persistence in volatility is transmitted when using implied

volatility. We also found that both estimators generate very different estimations

of volatility during the most volatile period of the financial crisis. When estimating

the model with both volatility proxies, results indicate that RV does not bring

any information over and above the VIX. Namely, estimation of volatility remains

similar to that obtained when using only the VIX indicator. In terms of out-of-

sample forecasts, the models that include information from the proxy volatilities

perform better than the standard SV model.

Methodological extensions of this paper include the multivariate version of the

second econometric specification to include additional proxies of volatility via see-

mingly unrelated measurement equations (SUR) of possibly correlated measure

errors. In terms of implementation, one needs to further develop nonstatistical me-

trics to evaluate the out-of-sample performance of these volatility estimators, such

as resulting from minimum variance or maximum expected utility strategies.



157

3.6 Appendix to Chapter 3

3.6.1 Model 2 - Bivariate

In this section we describe the algorithm to estimate Model 2 when using 2

competing log volatility proxies (X1, X2). The general model is given by :

rt =
√
htλtεt

log ht+1 = α + δ log ht + σvvt+1, ut+1 = σvvt+1

X1t = β0 + β1 log ht + ση1η1t, z1t = ση1η1t

X2t = γ0 + γ1 log ht + ση2η2t, z2t = ση2η2t

at = (εt, ut+1, z1t, z2t) ∼ N(0,Σ)

Σ =


1 ρ1σv 0 0

ρ1σv σ2
v 0 0

0 0 σ2
η1

0

0 0 0 σ2
η2


The algorithm to estimate this model is based on the same steps described in

Section 2, with modifications to steps (2) and (4).

– In step (2), we now have to estimate the parameters of the log volatility equa-

tion and those of each volatility equation : ω = (α, δ, σv, β0, β1, ση1 , γ0, γ1, ση2).

In this model we assume that there is no error correlation between the proxy

equations, so, we can estimate the parameters of each equation independently

using direct draws :

1. Draw (α, δ) from p(α, δ|σv, h) which is Normal distribution and direct

draws can be performed. σv is draw joint with ρ1 using the same step

(3) of Model 1 and 2.

2. Draw (β0, β1) from p(β0, β1|ση1 , h) which is Normal distribution and di-
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rect draws can be performed. Draw ση1 from p(ση1|β0, β1, h) which is an

Inverted Gamma distribution an direct draws are possible.

3. Draw (γ0, γ1) from p(γ0, γ1|ση2 , h) which is Normal distribution and di-

rect draws can be performed. Draw ση2 from p(ση2 |γ0, γ1, h) which is an

Inverted Gamma distribution an direct draws are possible.

– In step (4), we now write :

Σ−1 =


S11 S12 0 0

S12 S22 0 0

0 0 S33 S34

0 0 S34 S44

 =


1

(1−ρ21)
−ρ1

(1−ρ21)σv
0 0

−ρ1
(1−ρ21)σv

1
(1−ρ21)σ2

v
0 0

0 0 1
σ2
η1

0

0 0 0 1
σ2
η2


Then, p(ht|.) ∝ :

h−1.5
t exp

(
−1

2

S11r
2
t

ht
− S12εtut+1 − S12εt−1ut −

1

2
S22(u2

t+1 + u2
t )−

1

2
S33z

2
1t −

1

2
S44z

2
2t

)
Developing :

1. B = −1
2
S22(u2

t+1 + u2
t )− 1

2
S33z

2
1t − 1

2
S44z

2
2t = −1

2

(log ht−µ∗t )2

s∗2

where :

(a) µ∗t = s∗2
(
µ1ts

−2
1 + µ2ts

−2
2 + µ3ts

−2
3

)
, s∗2 = 1

s−2
1 +s−2

2 +s−2
3

.

(b) µ1t = α(1−δ)+δ(log ht+1+log ht−1)
(1+δ2)

, s2
1 = 1

S22(1+δ2)
.

(c) µ2t = X1t−β0
β1

, s2
2 = β−2

1 S−1
33 .

(d) µ3t = X2t−θ0
θ1

, s2
3 = θ−2

1 S−1
44 .

2. C = −S12εt−1ut ∝ log h

(
−S12

rt−1√
ht−1

)
t

Replacing into the posterior of h, we have :
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p(ht|.) ∝

1

h

(
1.5+S12

rt−1
ht−1

)
t

exp
[
−1

2
S11

r2t
ht
− 1

2

(log ht−µ∗t )2

s∗2
− S12rt

ut+1√
ht

]
As in Model 2, the proposal density is given by :

q2(ht|.) ∼ IG(φ2t, θ
∗
t ) ∝

1

hφ2t+1
t

exp (−θ∗t /ht)

and the new parameters of the proposal are given by :

– φ2t = S12
rt−1

ht−1
+ 0.5 + φLN

φLN =
1− 2es

∗2

1− es∗2

– θ∗t = θt − sδS12rt

θt = S11
r2
t

2
+ θLN

θLN = (φLN − 1)eµ
∗
t+0.5s∗2

The s is to compensate for the term ut+1√
ht

that is in the posterior of h when

ρ1 is different from zero.
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3.6.2 Comparison of JPR and KSC estimations

In order to compare the performance of each method we use the KSC algorithm

to estimate the simple SV model and the SV model extended with an exogenous

variable, RV 30sec, using the 500 simulated samples of 1,500 daily observations

with prices measured without error. Table 3.21 reports the sampling performance

of the posterior mean of the parameters based on 30,000 draws after discarding the

first 1,000. Clearly, the two algorithms deliver almost the same output, parameter

posteriors are almost identical for both cases studied.

We also compare the single-move and the multi-move algorithms for inference

in volatility. Table 3.22 reports the RMSE and %MAE of the (in-sample) posterior

means of
√
ht. We observe that the single-move and multi-move algorithm produce

about the same posterior means of volatility. We will show later, with actual data,

that this is also true for the entire posterior distribution of volatility.

Now we run both algorithms on 809 days of the daily UK pound to US$ exchange

rate. Table 3.23 shows the posterior analysis, where the two models produce nearly

identical inference.

Possibly, the multi-move will result in different posterior densities for the vola-

tilities
√
ht ? In Figure 3.21 we show plots of the posterior mean and the 5th and

95th quantiles of the posterior distribution of p(
√
ht), for both algorithms. These

are also identical. These results indicate that SV models estimated by single-move

or multi-move MCMC can deliver, period after period, posterior distributions of

smoothed volatilities with a very satisfactory degree of precision.



161

Table 3.21 – Single-Move versus Multi-Move MCMC algorithm : Parameter estimation

Models α β δ σv β + δ

True value -0.37 0.96 0.21

Single - move
No RV
Average -0.479 0.948 0.229
5% -0.744 0.92 0.176
95% -0.268 0.971 0.291
RMSE 0.192 0.021 0.041

RV 30sec
Average -0.321 0.819 0.146 0.187 0.965
5% -1.031 0.633 0.017 0.066 0.888
95% 0.364 0.972 0.334 0.33 1.039
RMSE 0.435 0.16 0.816 0.065 0.047

Multi - move KSC
No RV
Average -0.443 0.952 0.221
5% -0.612 0.934 0.18
95% -0.305 0.967 0.267
RMSE 0.16 0.017 0.037

RV 30sec
Average -0.33 0.841 0.124 0.189 0.965
5% -0.872 0.695 0.02 0.08 0.907
95% 0.187 0.962 0.271 0.311 1.021
RMSE 0.456 0.151 0.841 0.093 0.049

The sampling distributions are based on 500 samples simulated with 1500 daily observations with prices measured
without error. The rows entitled Average and RMSE report the average and the mean squared errors of the 500
posterior means. The rows entitled 5% and 95% report the average of the 500 5th and 95th posterior percentiles.
The posteriors are based on 30,000 draws after discarding the first 1,000 draws.
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Table 3.22 – Single-Move versus Multi-Move MCMC algorithm : In sample fit of
√
ht

Models RMSE %MAE

Single - move
No RV 2.19 16.27
RV 30 sec 1.27 8.98

Multi - move KSC
No RV 2.19 16.19
RV 30 sec 1.27 8.98

The sampling distributions are based on the 500 samples simulated with 1500 daily observations with prices
measured without error. For each observation, we compute the estimation error of the posterior mean of

√
ht.

We report the root mean squared error, RMSE, and the average of the absolute values of % errors, %MAE. The
averages are computed over all the 750,000 observations.

Table 3.23 – Single vs multi-move - posterior analysis - UK £

δ σv
Single-move
Mean 0.992 0.108
5% , 95% [0.983 , 0.999] [0.075 , 0.146]

Multi-move
Mean 0.993 0.097
5% , 95% [0.988 , 0.998] [0.077 , 0.122]
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Figure 3.21 – Single vs multi move - p(ht|R1, . . . , RT ) - UK £.
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3.6.3 Particle Learning for SV-RV

The SV-RV model can be written as :

yt = log ht + zt

log ht = α + βXt−1 + δ log ht−1 + σvvt

where yt = log(rt + c)2, c is a small quantity. Then, the error term zt ∼ log(χ2
1)

is approximated by a discrete mixture of normals with fixed weights
∑10

j=1 πjZj

with Zj ∼ N(µj, σ
2
j ). An auxiliary indicator variable It is introduced to track the

mixture component. It+1 = j indicates that the current volatility state is the j-th

component of the mixture distribution :

p(yt+1| log ht+1, It+1 = j) = N(log ht+1 + µj, σ
2
j )

Assuming that, at time t, we have the particles zt =
[
(lht, st, ω, It)

(i)
]N
i=1

, then the

steps of the PL algorithm are :

– Compute weigths for i = 1, . . . , N :

ω
(i)
t+1 ∝ p(yt+1|lh(i)

t , θ
(i), I

(i)
t )

∝ fn(yt+1;µ
I
(i)
t+1

+ α(i) + β(i)Xt + δ(i)lh
(i)
t , σ

2

I
(i)
t+1

+ (σ2
v)

(i))

– For i = 1, . . . , N :

– Re-sample from zt with weights wt+1

k(i) ∼Multi({ω(i)
t+1}Ni=1)

– Draw indicator :

I
(i)
t+1 ∼ p(It+1|(lht, ω)) = Multi10(πj)

– Propagate states :
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I
(i)
t+1 ∼ p(It+1|(lht, ω) = Multi10(πj)

– Propagate states : log volatilities :

lh
(i)
t+1 ∼ p(lht+1|(lht, ω, It+1)k(i), yt+1)

lh
(i)
t+1 ∼ fN(lht+1;meani, vari)

where :

vari =

[
(σ−2

I
(k(i))
t+1

+ (σ−2
v )(k(i)))

]−1

meani = vari

[
σ−2

I
(k(i))
t+1

(yt+1 − µI(k(i))t+1

) + (σ−2
v )(k(i)))(α(i) + α

(k(i))
1 Xt + δ(k(i))lh

(k(i))
t )

]

– Update Recursive sufficient statistics :

– s
(i)
t+1 = (vt+1, vs

(i)
t ,m

(i)
t+1, C

(i)
t+1)

– vt+1 = vt + 1

– vst+1 = vst + [mtC
−1
t mt + lh2

t+1 −mt+1C
−1
t+ mt+1]

– C−1
t+1 = C−1

t +XtX
>
t

– mt+1 = Ct+1(C−1
t mt +Xtlht+1)

where Xt = [1 Xt lht]

– Sample parameters : :

– θ(i) ∼ p(θ|s(i)
t+1)

– p(α, α1, δ|.) ∼ N(m
(i)
t+1, C

(i)
t+1)
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– p(σv|.) ∼ IG(vt+1, vs
(i)
t+1)

Application

Compared to filtered volatilities, smoothed volatilities benefit from the infor-

mation contained in future y’s ; therefore, one expects the posterior distributions

of smoothed volatilities to have a tighter spread than those of filtered volatilities.

Figure 3.22 demonstrates the magnitude of the difference for the UK Pound.

The top and middle plots show the 90% intervals for the smoothed and filtered

volatility densities obtained by MCMC and the CJLP algorithm. The bottom plot

demonstrates the evolution of the parameter δ as the filtering algorithm updates

its posterior distribution.
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Figure 3.22 – Smoothed volatility,
√
ht|yT , filtered volatility

√
ht|yt and learning δ|yt



168

3.6.4 Real data : posterior parameter distribution

Tables 3.24 to 3.26 presents the posterior parameter distributions of the bench-

mark model (M0), Model 1 (M1) and Model 2 (M2) for all the series analyzed.

Table 3.27 presents the posterior parameter distribution for the models applied to

the S&P500 index. For the currencies, we estimate the basic form of each model

and for the country stock indices we estimate the correlated version.

Posterior means are based on 50,000 draws after discarding the first 5,000 draws.

The rows entitled 5% and 95% report the posterior 5th and 95th percentiles.
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Table 3.24 – Currencies and Indices : posterior parameter distribution for standard Model.

Models α δ σv ρ

Currencies - SV
British Pound
Average -0.066 0.994 0.103
5% -0.148 0.986 0.079
95% -0.007 0.999 0.130
Euro
Average -0.067 0.994 0.097
5% -0.145 0.986 0.076
95% -0.008 0.999 0.124
Japanese Yen
Average -0.161 0.984 0.158
5% -0.309 0.970 0.119
95% -0.042 0.996 0.205

Indices - SVC
S&P 500
Average -0.081 0.991 0.168 -0.592
5% -0.163 0.982 0.133 -0.731
95% -0.013 0.998 0.210 -0.411
TSE
Average -0.074 0.991 0.128 -0.568
5% -0.156 0.982 0.099 -0.745
95% -0.011 0.999 0.162 -0.344
Nikkei 250
Average -0.129 0.984 0.172 -0.719
5% -0.245 0.971 0.138 -0.824
95% -0.032 0.996 0.212 -0.578
FTSE 100
Average -0.147 0.984 0.195 -0.645
5% -0.261 0.971 0.157 -0.759
95% -0.047 0.995 0.235 -0.494
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Table 3.25 – Currencies and Indices : posterior parameter distribution for Model 1

Models α α1 δ σv α1 + δ ρ

Currencies - SV-RV
British Pound
Average -0.213 0.266 0.713 0.108 0.979
5% -0.479 0.153 0.552 0.076 0.953
95% -0.025 0.419 0.833 0.155 0.997
Euro
Average -0.125 0.166 0.821 0.108 0.987
5% -0.318 0.082 0.691 0.075 0.968
95% -0.004 0.288 0.912 0.153 0.999
Japanese Yen
Average -0.139 0.157 0.830 0.202 0.987
5% -0.358 0.061 0.701 0.129 0.965
95% -0.013 0.278 0.929 0.294 0.999

Indices - SVC-RV
S&P 500
Average -0.106 0.559 0.421 0.311 0.980 -0.081
5% -0.449 0.283 -0.050 0.134 0.942 -0.297
95% 0.125 1.021 0.703 0.458 0.999 0.134
TSE
Average 0.029 0.471 0.488 0.127 0.959 -0.032
5% -0.366 0.186 -0.141 0.080 0.909 -0.253
95% 0.662 1.084 0.791 0.198 0.995 0.184
Nikkei 250
Average 0.984 1.217 -0.303 0.156 0.914 -0.157
5% -0.750 0.418 -0.665 0.087 0.751 -0.528
95% 2.531 1.644 0.513 0.277 0.998 0.262
FTSE 100
Average 0.268 0.773 0.196 0.123 0.969 -0.042
5% -0.260 0.328 -0.390 0.079 0.919 -0.334
95% 0.936 1.369 0.649 0.183 0.998 0.256
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Table 3.26 – Currencies and Indices : posterior parameter distribution for Model 2

Models α δ σh β0 β1 σrv ρ

Currencies - SV-RV
British Pound
Average -0.120 0.988 0.145 0.088 1.005 0.279
5% -0.230 0.978 0.120 -0.830 0.917 0.261
95% -0.025 0.997 0.175 1.153 1.106 0.297
Euro
Average -0.099 0.990 0.124 -0.421 0.960 0.326
5% -0.197 0.981 0.100 -1.365 0.871 0.308
95% -0.018 0.998 0.151 0.649 1.062 0.344
Japanese Yen
Average -0.617 0.940 0.316 -0.907 0.898 0.279
5% -0.899 0.912 0.262 -1.753 0.815 0.247
95% -0.363 0.964 0.376 -0.013 0.986 0.309

Indices - SVC-RV
S&P 500
Average -0.194 0.979 0.273 -0.355 0.965 0.415 -0.543
5% -0.322 0.965 0.236 -0.963 0.899 0.387 -0.648
95% -0.074 0.992 0.314 0.295 1.037 0.443 -0.435
TSE
Average -0.178 0.980 0.202 -0.075 1.071 0.415 -0.407
5% -0.299 0.966 0.172 -0.868 0.983 0.389 -0.534
95% -0.064 0.992 0.234 0.783 1.167 0.442 -0.279
Nikkei 250
Average -0.268 0.968 0.235 -2.013 0.882 0.425 -0.584
5% -0.428 0.949 0.196 -2.699 0.801 0.397 -0.697
95% -0.123 0.985 0.277 -1.243 0.974 0.453 -0.463
FTSE 100
Average -0.136 0.985 0.190 -0.855 0.966 0.410 -0.557
5% -0.235 0.974 0.167 -1.510 0.894 0.387 -0.680
95% -0.043 0.995 0.217 -0.161 1.043 0.433 -0.421



172

Table 3.27 – S&P500 : Posterior parameter distribution - M2
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General Conclusion

This thesis contains three chapters that aim to contribute to the literature

related to the estimation of state space models and latent volatility using stochastic

volatility models.

In the first chapter, we have made several contributions to the literature of

linear Gaussian state space models. We explicitly derive the precision (inverse of

variance) and co-vector (precision times vector) of the conditional distribution of

the state given the data. We propose a new efficient method for drawing states in

state space models. We compare the computational efficiency of various methods

for drawing states showing that the Cholesky Factor Algorithm and our new me-

thod are much more computationally efficient than methods based on the Kalman

filter. The method we propose is best suited for high dimension problems or when

repeated draws of the state are required. We consider an application of our me-

thods to the evaluation of the log-likelihood function for a multivariate Poisson

model with latent count intensities.

In the second chapter, we have contributed to the estimation of multivariate

stochastic volatility models. We presented a new flexible approach which allows

capturing many of the stylized facts observed in returns. We allow for different

types of dependence. We can model time-varying conditional correlation matrices

by incorporating factors in the return equation, where the factors are independent

SV processes with Student’s t innovations. Furthermore, we can incorporate copulas

to allow conditional return dependence given volatility, allowing different Student’s

t marginals to capture return heterogeneity.
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The two key advantage of our method over auxiliary mixture approaches is that

our method is less model specific and it is an exact method. We draw volatilities one-

at-a-time in the cross section dimension and as a block in the time dimension using

the HESSIAN method introduced by McCausland (2012). This requires that the

multivariate state sequence be a Gaussian first-order vector autoregressive process

and that the conditional distribution of the observed vector depend only on the

contemporaneous state vector. This requirement is satisfied for a wide variety of

state space models, including but not limited to multivariate stochastic volatility

models.

Finally, in the third chapter we have contributed to assess the information

content of different realized volatility estimators to the estimation and forecasting

of volatility. We considered two econometric specifications to incorporate realized

volatility into the inference on latent volatility.

After our performance evaluation, we conclude that the ability of realized vo-

latility to improve forecasts is seriously affected by price noise, and highlight the

importance of using adjustments that are robust to the presence of noise. We also

find that the second econometric specification, where the volatility proxy is expli-

citly linked to the latent volatility, results in better in-sample and out-of-sample

estimation of volatility than the first specification. This is especially true for multi

period forecasts.

The results from our empirical application using currencies and stock indices

showed that the odds are in favor of the models that incorporate the information

of realized volatility estimators. Besides, this evidence has increased for the recent

financial crisis period of 2008-2009. However, the out-of-sample evaluation of vola-

tility forecasts does not allow us to conclude whether one model dominates the the

others.
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