Solutions de rang k et invariants de Riemann pour les systèmes de type hydrodynamique multidimensionnels


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Doctorat / Doctoral

Affiliation

Mots-clés

  • Invariants de Riemann
  • Riemann invariants
  • Systèmes de type hydrodynamique
  • Hydrodynamic type systems
  • Méthodes de réductions par symétries
  • Symmetry methods
  • Symétries conditionelles
  • Conditional symmetries
  • Solutions de rang k
  • Rank-k solutions

Organisme subventionnaire

Résumé

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.


In this work, the conditional symmetry method is adapted in order to construct solutions expressed in terms of Riemann invariants. Nonelliptic quasilinear homogeneous systems of multidimensional partial differential equations of hydrodynamic type are considered. A detailed description of the necessary and sufficient conditions for the local existence of these types of solutions is given. The relationship between the structure of integral elements and the possibility of constructing certain classes of rank-k solutions is discussed. These classes of solutions include nonlinear superpositions of Riemann waves and multisolitonic solutions. This approach is generalized to first-order inhomogeneous hyperbolic quasilinear systems. These methods are applied to the equations describing an isentropic fluid flow in (3+1) dimensions. Several new classes of rank-2 and rank-3 solutions are obtained which contain double and triple solitonic solutions. New nonlinear and linear superpositions of Riemann waves are described. Finally, certain aspects of the construction of rank-2 solutions through an application to the dispersionless Kadomtsev-Petviashvili equation are discussed.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.