Accumulation de dose à partir de champs de déformation 4D appliqués aux traitements au CyberKnife et à l'IMRT
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Accumulation de dose
- 4D
- Motion management
- IMRT
- CyberKnife
- Recalage déformable d'image
- Gestion du mouvement
- Monte Carlo
- defDOSXYZnrc
- Dose accumulation
- Deformable image registration
Organisme subventionnaire
Résumé
Résumé
Le cancer pulmonaire est la principale cause de décès parmi tous les cancers au Canada. Le pronostic est généralement faible, de l'ordre de 15% de taux de survie après 5 ans. Les déplacements internes des structures anatomiques apportent une incertitude sur la précision des traitements en radio-oncologie, ce qui diminue leur efficacité. Dans cette optique, certaines techniques comme la radio-chirurgie et la radiothérapie par modulation de l'intensité (IMRT) visent à améliorer les résultats cliniques en ciblant davantage la tumeur. Ceci permet d'augmenter la dose reçue par les tissus cancéreux et de réduire celle administrée aux tissus sains avoisinants. Ce projet vise à mieux évaluer la dose réelle reçue pendant un traitement considérant une anatomie en mouvement. Pour ce faire, des plans de CyberKnife et d'IMRT sont recalculés en utilisant un algorithme Monte Carlo 4D de transport de particules qui permet d'effectuer de l'accumulation de dose dans une géométrie déformable. Un environnement de simulation a été développé afin de modéliser ces deux modalités pour comparer les distributions de doses standard et 4D. Les déformations dans le patient sont obtenues en utilisant un algorithme de recalage déformable d'image (DIR) entre les différentes phases respiratoire générées par le scan CT 4D. Ceci permet de conserver une correspondance de voxels à voxels entre la géométrie de référence et celles déformées. La DIR est calculée en utilisant la suite ANTs («Advanced Normalization Tools») et est basée sur des difféomorphismes. Une version modifiée de DOSXYZnrc de la suite EGSnrc, defDOSXYZnrc, est utilisée pour le transport de particule en 4D. Les résultats sont comparés à une planification standard afin de valider le modèle actuel qui constitue une approximation par rapport à une vraie accumulation de dose en 4D.
Pulmonary cancer is the main cause of death amongst all cancers in Canada with a prognosis of about 15% survival rate in 5 years. The efficiency of radiotherapy treatments is lower when high displacements of the tumors are observed, mostly caused by intrafraction respiratory motion. Advanced techniques such as radiosurgery and intensity-modulated radiotherapy treatments (IMRT) are expected to provide better clinical results by delivering higher radiation doses to the tumor while sparing the surrounding healthy lung tissues. The goal of this project is to perform 4D Monte Carlo dose recalculations to assess the dosimetric impact of moving tumors in CyberKnife and IMRT treatments using dose accumulation in deforming anatomies. Scripts developed in-house were used to model both situations and to compare the Monte Carlo dose distributions with those obtained with standard clinical plans. Displacement vectors fields are obtained from a 4D CT data set and a deformable image registration (DIR) algorithm which allows a voxel-to-voxel correspondence between each respiratory phase. The DIR is computed by the Advanced Normalization Tools (ANTs) software and is mostly based on diffeormophisms. A modified version of DOSXYZnrc from EGSnrc software, defDOSXYZnrc, is used to transport radiation through non-linear geometries. These results are then compared to a typical 3D plan to determine whether or not the current planification is a good approximation of the true 4D dose calculation.
Pulmonary cancer is the main cause of death amongst all cancers in Canada with a prognosis of about 15% survival rate in 5 years. The efficiency of radiotherapy treatments is lower when high displacements of the tumors are observed, mostly caused by intrafraction respiratory motion. Advanced techniques such as radiosurgery and intensity-modulated radiotherapy treatments (IMRT) are expected to provide better clinical results by delivering higher radiation doses to the tumor while sparing the surrounding healthy lung tissues. The goal of this project is to perform 4D Monte Carlo dose recalculations to assess the dosimetric impact of moving tumors in CyberKnife and IMRT treatments using dose accumulation in deforming anatomies. Scripts developed in-house were used to model both situations and to compare the Monte Carlo dose distributions with those obtained with standard clinical plans. Displacement vectors fields are obtained from a 4D CT data set and a deformable image registration (DIR) algorithm which allows a voxel-to-voxel correspondence between each respiratory phase. The DIR is computed by the Advanced Normalization Tools (ANTs) software and is mostly based on diffeormophisms. A modified version of DOSXYZnrc from EGSnrc software, defDOSXYZnrc, is used to transport radiation through non-linear geometries. These results are then compared to a typical 3D plan to determine whether or not the current planification is a good approximation of the true 4D dose calculation.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.