Modèles de flammelette en combustion turbulente avec extinction et réallumage : étude asymptotique et numérique, estimation d’erreur a posteriori et modélisation adaptative


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Doctorat / Doctoral

Affiliation

Mots-clés

  • Modélisation adaptative
  • Flammelette
  • Flamelet
  • Modeling errors
  • A posteriori error estimation
  • Turbulent combustion
  • Nonpremixed combustion
  • Quenching
  • Ignition
  • Asymptotic analysis
  • Erreurs de modélisation
  • Estimation d'erreur a posteriori
  • Combustion turbulente
  • Combustion non prémélangée
  • Extinction
  • Réallumage
  • Analyse asymptotique
  • Adaptive modeling

Organisme subventionnaire

Résumé

Résumé

On s’intéresse ici aux erreurs de modélisation liées à l’usage de modèles de flammelette sous-maille en combustion turbulente non prémélangée. Le but de cette thèse est de développer une stratégie d’estimation d’erreur a posteriori pour déterminer le meilleur modèle parmi une hiérarchie, à un coût numérique similaire à l’utilisation de ces mêmes modèles. Dans un premier temps, une stratégie faisant appel à un estimateur basé sur les résidus pondérés est développée et testée sur un système d’équations d’advection-diffusion-réaction. Dans un deuxième temps, on teste la méthodologie d’estimation d’erreur sur un autre système d’équations, où des effets d’extinction et de réallumage sont ajoutés. Lorsqu’il n’y a pas d’advection, une analyse asymptotique rigoureuse montre l’existence de plusieurs régimes de combustion déjà observés dans les simulations numériques. Nous obtenons une approximation des paramètres de réallumage et d’extinction avec la courbe en «S», un graphe de la température maximale de la flamme en fonction du nombre de Damköhler, composée de trois branches et d’une double courbure. En ajoutant des effets advectifs, on obtient également une courbe en «S» correspondant aux régimes de combustion déjà identifiés. Nous comparons les erreurs de modélisation liées aux approximations asymptotiques dans les deux régimes stables et établissons une nouvelle hiérarchie des modèles en fonction du régime de combustion. Ces erreurs sont comparées aux estimations données par la stratégie d’estimation d’erreur. Si un seul régime stable de combustion existe, l’estimateur d’erreur l’identifie correctement ; si plus d’un régime est possible, on obtient une fac˛on systématique de choisir un régime. Pour les régimes où plus d’un modèle est approprié, la hiérarchie prédite par l’estimateur est correcte.
We are interested here in the modeling errors of subgrid flamelet models in nonpremixed turbulent combustion. The goal of this thesis is to develop an a posteriori error estimation strategy to determine the best model within a hierarchy, with a numerical cost at most that of using the models in the first place. Firstly, we develop and test a dual-weighted residual estimator strategy on a system of advection-diffusion-reaction equations. Secondly, we test that methodology on another system of equations, where quenching and ignition effects are added. In the absence of advection, a rigorous asymptotic analysis shows the existence of many combustion regimes already observed in numerical simulations. We obtain approximations of the quenching and ignition parameters, alongside the S-shaped curve, a plot of the maximal flame temperature as a function of the Damköhler number, consisting of three branches and two bends. When advection effects are added, we still obtain a S-shaped curve corresponding to the known combustion regimes. We compare the modeling errors of the asymptotic approximations in the two stable regimes and establish new model hierarchies for each combustion regime. These errors are compared with the estimations obtained by using the error estimation strategy. When only one stable combustion regime exists, the error estimator correctly identifies that regime; when two or more regimes are possible, it gives a systematic way of choosing one regime. For regimes where more than one model is appropriate, the error estimator’s predicted hierarchy is correct.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.