Estimating treatment importance in multidrug-resistant tuberculosis using Targeted Learning : an observational individual patient data network meta-analysis


Estimating MDR-TB treatment importance using TMLE
Article
Version acceptée / Accepted Manuscript

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Biometrics

Date de la Conférence

Lieu de la Conférence

Éditeur

Wiley

Cycle d'études

Programme

Mots-clés

  • Double robustness
  • Individual patient data
  • Meta-analysis
  • Multidrug-resistant tuberculosis
  • Targeted maximum likelihood estimation
  • Transportability
  • Treatment importance

Organisme subventionnaire

Résumé

Persons with multidrug‐resistant tuberculosis (MDR‐TB) have a disease resulting from a strain of tuberculosis (TB) that does not respond to at least isoniazid and rifampicin, the two most effective anti‐TB drugs. MDR‐TB is always treated with multiple antimicrobial agents. Our data consist of individual patient data from 31 international observational studies with varying prescription practices, access to medications, and distributions of antibiotic resistance. In this study, we develop identifiability criteria for the estimation of a global treatment importance metric in the context where not all medications are observed in all studies. With stronger causal assumptions, this treatment importance metric can be interpreted as the effect of adding a medication to the existing treatments. We then use this metric to rank 15 observed antimicrobial agents in terms of their estimated add‐on value. Using the concept of transportability, we propose an implementation of targeted maximum likelihood estimation, a doubly robust and locally efficient plug‐in estimator, to estimate the treatment importance metric. A clustered sandwich estimator is adopted to compute variance estimates and produce confidence intervals. Simulation studies are conducted to assess the performance of our estimator, verify the double robustness property, and assess the appropriateness of the variance estimation approach.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.