Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators


Article
Version acceptée / Accepted Manuscript

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Statistical methods in medical research

Date de la Conférence

Lieu de la Conférence

Éditeur

SAGE

Cycle d'études

Programme

Mots-clés

  • Causal inference
  • Positivity
  • Doubly robust
  • IPTW
  • Super learner

Organisme subventionnaire

Résumé

Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in terms of propensity score densities which can lead to biased estimates of the treatment effect. To motivate the problem, we evaluated the Targeted Minimum Loss-based Estimation procedure using a simulation scenario to estimate the average treatment effect. We highlight the divergence in estimates obtained when using parametric and data-adaptive methods to estimate the propensity score. We then adapted an existing diagnostic tool based on a bootstrap resampling of the subjects and simulation of the outcome data in order to show that the estimation using data-adaptive methods for the propensity score in this study may lead to large bias and poor coverage. The adapted bootstrap procedure is able to identify this instability and can be used as a diagnostic tool.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.