Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésien
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Fonctions monotones bidimensionnelles
- Monotone bivariate functions
- Tables de mortalité
- Life tables
- Splines monotones
- Monotone splines
- Contraintes de monotonie
- Constraints of monotonicity
- Méthodes de Monte Carlo par chaînes de Markov
- Markov chain Monte Carlo techniques
Organisme subventionnaire
Résumé
Résumé
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones
en lignes et/ou en colonnes, pour une éventuelle application sur les tables
de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons
la forme fonctionnelle des données par splines bidimensionnelles. L’objectif
consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace
d’entreposage de la table en minimisant la perte d’information. De même, nous
désirons étudier le temps nécessaire pour reconstituer la table.
L’approximation doit conserver les mêmes propriétés que la table de référence,
en particulier la monotonie des données. Nous travaillons avec une base
de fonctions splines monotones afin d’imposer plus facilement la monotonie au
modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler
favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel
sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons
l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de
monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite,
nous indiquons comment obtenir un estimateur a posteriori à l’aide des
méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le
comportement de notre estimateur en modélisant une table de la loi normale ainsi
qu’une table t de distribution de Student. L’estimation de nos données d’intérêt,
soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.
This master’s thesis is about the estimation of bivariate tables which are monotone within the rows and/or the columns, with a special interest in the approximation of life tables. This problem is approached through a nonparametric Bayesian regression model, in particular linear combinations of regression splines. By condensing a life table, our goal is to reduce its storage space without losing the entries’ accuracy. We will also study the reconstruction time of the table with our estimators. The properties of the reference table, specifically its monotonicity, must be preserved in the estimation. We are working with a monotone spline basis since splines are flexible and their derivatives can easily be manipulated. Those properties enable the imposition of constraints of monotonicity on our model. A brief review on univariate approximations of monotone functions is then extended to bivariate estimations. We use hierarchical Bayesian modeling to include the constraints in the prior distributions. We then explain the Markov chain Monte Carlo algorithm to obtain a posterior estimator. Finally, we study the estimator’s behaviour by applying our model on the Standard Normal table and the Student’s t table. We estimate our data of interest, the life table, to establish the improvement in data accessibility.
This master’s thesis is about the estimation of bivariate tables which are monotone within the rows and/or the columns, with a special interest in the approximation of life tables. This problem is approached through a nonparametric Bayesian regression model, in particular linear combinations of regression splines. By condensing a life table, our goal is to reduce its storage space without losing the entries’ accuracy. We will also study the reconstruction time of the table with our estimators. The properties of the reference table, specifically its monotonicity, must be preserved in the estimation. We are working with a monotone spline basis since splines are flexible and their derivatives can easily be manipulated. Those properties enable the imposition of constraints of monotonicity on our model. A brief review on univariate approximations of monotone functions is then extended to bivariate estimations. We use hierarchical Bayesian modeling to include the constraints in the prior distributions. We then explain the Markov chain Monte Carlo algorithm to obtain a posterior estimator. Finally, we study the estimator’s behaviour by applying our model on the Standard Normal table and the Student’s t table. We estimate our data of interest, the life table, to establish the improvement in data accessibility.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.