Étude des maxima de champs gaussiens corrélés


Thèse ou mémoire / Thesis or Dissertation
En cours de chargement...
Vignette d'image

Date de publication

Autrices et auteurs

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Affiliation

Mots-clés

  • Maxima
  • Champ libre gaussien
  • Modèle hiérarchique
  • Marche aléatoire
  • Gaussian free field
  • Hierarchical model
  • Random walk

Organisme subventionnaire

Résumé

Ce mémoire porte sur l’étude des maxima de champs gaussiens. Plus précisément, l’étude portera sur la convergence en loi, la convergence du premier ordre et la convergence du deuxième ordre du maximum d’une collection de variables aléatoires gaussiennes. Les modèles de champs gaussiens présentés sont le modèle i.i.d., le modèle hiérarchique et le champ libre gaussien. Ces champs gaussiens diffèrent par le degré de corrélation entre les variables aléatoires. Le résultat principal de ce mémoire sera que la convergence en probabilité du premier ordre du maximum est la même pour les trois modèles. Quelques résultats de simulations seront présentés afin de corroborer les résultats théoriques obtenus.


In this study, results about maxima of different Gaussian fields will be presented. More precisely, results for the convergence of the first order of the maximum of a set of Gaussian variables will be presented. Some results on the convergence of the second order, and of the law will also be explained. The models presented here are the Gaussian field of i.i.d. variables, the hierarchical model and the Gaussian free fields model. These fields differ from one another by their correlation structure. The main result of this study is that the first order convergence in probability of the maximum is the same for the three models. Finally, numerical simulations results will be presented to confirm theoretical results.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.