Hamiltonian Monte Carlo and consistent sampling for score matching based generative modeling


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Programme

Affiliation

Mots-clés

  • Generative Modeling
  • Denoising Score Matching
  • Monte-Carlo Hamiltonien
  • Processus de diffusion
  • Hamiltonian Monte Carlo
  • Langevin Dynamics
  • Hamiltonian Dynamics
  • Processus génératif
  • Apprentissage profond
  • Réseaux neuronaux
  • Dynamiques Hamiltoniennes
  • Méthodes de Monte-Carlo par chaînes de Markov (MCMC)

Organisme subventionnaire

Résumé

Résumé

Ce mémoire a pour but de présenter des analyses pertinentes au sujet des méthodes génératives dites Denoising Score Matching dans le but de mieux comprendre leur fonctionnement et d'améliorer les techniques existantes. Ces méthodes consistent à graduellement réduire le bruit dans une image en usant de réseaux neuraux profonds à des fins de synthèse. Tandis que les premiers chapitres contextualisent le problème du Denoising Score Matching, les chapitres suivants s’affairent à reformuler l’objectif d’entraînement du réseau neuronal, puis à analyser le processus itératif générateur. J’introduis par la suite les concepts fondateurs des méthodes de Monte Carlo par chaînes de Markov (MCMC) pour dynamiques Hamiltoniennes, que j’adapte ensuite à la synthèse d’image par réduction graduelle de bruit. Tandis que les dynamiques de Langevin ont jusqu’alors eut monopole des processus génératifs dans la littérature de synthèse par le score, les dynamiques Hamiltoniennes font l'objet d’un engouement quant à leur vitesse de convergence supérieure. Je démontre leur efficacité dans les sections suivantes et précise, dans le cas de la génération d'images complexes, les contextes dans lesquels leur usage est avantageux. Lors d’une étude d’ablation complète, je présente les gains indépendants et jumelés des améliorations proposées, et par le fait même, je contribue à notre compréhension des modèles basés sur le score.
This thesis presents pertinent analysis around generative modeling of the Denoising Score Matching family with the goals of better understanding how they work and improving existing methods. These methods work by gradually reducing noise in images using deep neural networks. While the first chapters contextualize the problem of Denoising Score Matching, the following chapters focus on reformulating the training objective of the neural network and analysing the iterative generative process. I introduce the founding concepts of Markov Chain Monte Carlo (MCMC) for Hamiltonian Dynamics and adapt them to our framework of image synthesis by annealing of Gaussian noise. While Langevin Dynamics have thus far dominated generative processes in the Denoising Score Matching literature, Hamiltonian Dynamics sustained interest from their superior convergence rate. I demonstrate their efficiency in the next chapters and elaborate on the contexts in which their use is advantageous to complex image generation. In a complete ablation study, I present the independent and coupled gains from every proposed improvements and thereby elevate our comprehension of Denoising Score Matching methods.

Table des matières

Notes

Avant-propos: Cet ouvrage se base en partie sur le travail réalisé en collaboration avec Alexia Jolicoeur-Martineau, Ioannis Mitliagkas et Rémi Tachet des Combes, réalisé en 2020 et publié à la conférence internationale d'apprentissage de représentations (ICLR 2021). Les analyses présentées dans les prochaines pages approfondissent, corrigent et ajoutent à cet ouvrage de manière substantive, sans toutefois reposer sur cet ouvrage ou quelconque connaissance couverte par ce texte.

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.