Nonparametric estimation of risk neutral density
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Densité neutre au risque
- Tarification des options
- Variable instrumentale
- Régression fonctionnelle
- Méthode de régularisation.
- Risk neutral density
- Option pricing
- Instrumental variable
- Functional regression
- Regularization method.
Organisme subventionnaire
Résumé
Résumé
Ce mémoire vise à estimer la densité neutre au risque (Risk neutral density (RND) en anglais) par une approche non paramétrique tout en tenant compte de l’endogénéité. Les prix transversaux des options européennes sont utilisés pour l’estimation. Le modèle principal considéré est la régression linéaire fonctionnelle. Nous montrons comment utiliser des variables instrumentales dans ce modèle pour corriger l’endogénéité. En outre, nous avons intégré des variables instrumentales dans le modèle approximant le RND par l’utilisation des fonctions d’Hermite à des fins de comparaison des résultats. Pour garantir un estimateur stable, nous utilisons la technique de régularisation de Tikhonov. Ensuite, nous effectuons des simulations de Monte-Carlo pour étudier l’impact des différents types de distribution RND sur les résultats obtenus. Plus précisément, nous analysons une distribution de mélange lognormale et une distribution de smile de Black-Scholes. Les résultats des simulations démontrent que l’estimateur utilisant des variables instrumentales pour corriger l’endogénéité est plus performant que l’alternative qui ne les utilise pas. En outre, les résultats de la distribution de smile de Black-Scholes sont plus performants que ceux de la distribution de mélange log-normale. Enfin, S&P 500 options sont utilisées pour une application de l’estimateur.
This thesis aims to estimate the risk-neutral density (RND) through a non-parametric approach while accounting for endogeneity. The cross-sectional prices of European options are used for the estimation. The primary model under consideration is functional linear regression. We have demonstrated the use of instrumental variables in this model to address endogeneity. Additionally, we have integrated instrumental variables into the model approximating RND through the use of Hermite functions for the purpose of result comparison. To ensure a stable estimator, we employ the Tikhonov regularization technique. Following this, we conduct Monte- Carlo simulations to investigate the impact of different RND distribution types on the obtained results. Specifically, we analyze a lognormal mixture distribution and a Black-Scholes smile distribution. The simulation results demonstrate that the estimator utilizing instrumental variables to adjust for endogeneity outperforms the non-adjusted alternative. Additionally, outcomes from the Black-Scholes smile distribution exhibit superior performance compared to those from the log-normal mixture distribution. Finally, S&P 500 options are used for an application of the estimator.
This thesis aims to estimate the risk-neutral density (RND) through a non-parametric approach while accounting for endogeneity. The cross-sectional prices of European options are used for the estimation. The primary model under consideration is functional linear regression. We have demonstrated the use of instrumental variables in this model to address endogeneity. Additionally, we have integrated instrumental variables into the model approximating RND through the use of Hermite functions for the purpose of result comparison. To ensure a stable estimator, we employ the Tikhonov regularization technique. Following this, we conduct Monte- Carlo simulations to investigate the impact of different RND distribution types on the obtained results. Specifically, we analyze a lognormal mixture distribution and a Black-Scholes smile distribution. The simulation results demonstrate that the estimator utilizing instrumental variables to adjust for endogeneity outperforms the non-adjusted alternative. Additionally, outcomes from the Black-Scholes smile distribution exhibit superior performance compared to those from the log-normal mixture distribution. Finally, S&P 500 options are used for an application of the estimator.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.