Développement et caractérisation de sources de neutres réactifs pour l’étude des interactions plasmas-surfaces
Date de publication
Autrices et auteurs
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Programme
Affiliation
Mots-clés
- Interactions plasmas-parois
- sources de neutres réactifs
- diagnostics des plasmas
- ondes de surface
- source pyrolitique
- Plasma surface interactions
- reactive neutral sources
- plasma diagnostics
- surface wave
- thermal cracker
Organisme subventionnaire
Résumé
L’objectif de ce mémoire de maîtrise est de développer et de caractériser diverses sources de neutres réactifs destinées à des études fondamentales des interactions plasmas-surfaces. Ce projet s’inscrit dans le cadre d’une vaste étude de la physique des interactions plasmas-parois mises en jeu dans les procédés de gravure par plasma des matériaux de pointe. Une revue de la littérature scientifique sur les diverses méthodes permettant de générer des faisceaux de neutres réactifs nous a permis de sélectionner deux types de sources. La première, une source pyrolitique, a été caractérisée par spectrométrie de masse en utilisant le C2F6 comme molécule mère. Nous avons montré que le C2F6 était dissocié à plus de 90% à 1000ºC et qu’il formait du CF4, lui-même dissocié en CF2 vers 900ºC. Ces résultats ont été validés à l’aide d’un modèle basé sur des calculs d’équilibres chimiques, qui a aussi prédit la formation de F à 1500ºC. La seconde source, un plasma entretenu par une onde électromagnétique de surfaces, a été caractérisée par spectroscopie optique d’émission et par interférométrie haute fréquence. Dans le cas du plasma d’argon créé par un champ électromagnétique (>GHz), nos travaux ont révélé une distribution en énergie des électrons à trois températures avec Te-low>Te-high
The goal of this Master thesis goal is to develop and characterize different sources of reactive neutrals aimed at fundamental studies of plasma-surface interactions. This project is part of a broader study on the physics driving plasma-wall interactions during plasma etching of advanced materials. Following our literature review of the various approaches used to generate radical beams, we have selected two types of sources. The first one, a thermal cracker, was characterized by line-of-sight mass spectrometry using C2F6 as the mother. We have shown that more than 90% of the C2F6 was dissociated at 1000ºC, producing CF4 that dissociates into CF2 at temperatures close to 900ºC. These results were in good agreement with the predictions of a model based on chemical equilibrium calculations, which also predicted the formation of F radicals at 1500 ºC. The second source, a surface-wave plasma, was characterised by optical emission spectroscopy and microwave interferometry. For a high-frequency (>1GHz) argon plasmas, we have shown a three temperature electron energy distribution function with Te-low>Te-high