La résolution du problème de formation de cellules dans un contexte multicritère
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Group technology
- Pareto optimization
- Groupement Technologique
- Problème de formation de cellules
- Optimisation multicritères
- Multi-objective optimization
- Cell formation problem
- Heuristics
Organisme subventionnaire
Résumé
Résumé
Les techniques de groupement technologique sont aujourd’hui utilisées dans de nombreux ateliers de fabrication; elles consistent à décomposer les systèmes industriels en sous-systèmes ou cellules constitués de pièces et de machines. Trouver le groupement technologique le plus efficace est formulé en recherche opérationnelle comme un problème de formation de cellules. La résolution de ce problème permet de tirer plusieurs avantages tels que la réduction des stocks et la simplification de la programmation. Plusieurs critères peuvent être définis au niveau des contraintes du problème tel que le flot intercellulaire,l’équilibrage de charges intracellulaires, les coûts de sous-traitance, les coûts de duplication des machines, etc.
Le problème de formation de cellules est un problème d'optimisation NP-difficile. Par conséquent les méthodes exactes ne peuvent être utilisées pour résoudre des problèmes de grande dimension dans un délai raisonnable. Par contre des méthodes heuristiques peuvent générer des solutions de qualité inférieure, mais dans un temps d’exécution raisonnable.
Dans ce mémoire, nous considérons ce problème dans un contexte bi-objectif spécifié en termes d’un facteur d’autonomie et de l’équilibre de charge entre les cellules. Nous
présentons trois types de méthodes métaheuristiques pour sa résolution et nous comparons numériquement ces métaheuristiques. De plus, pour des problèmes de petite dimension qui peuvent être résolus de façon exacte avec CPLEX, nous vérifions que ces métaheuristiques génèrent des solutions optimales.
Group technology techniques are now widely used in many manufacturing systems. Those techniques aim to decompose industrial systems into subsystems or cells of parts and machines. The problem of finding the most effectivegroup technology is formulated in operations research as the Cell Formation Problem. Several criteria can be used to specify the optimal solution such as flood intercellular, intracellular load balancing, etc. Solving this problem leads to several advantages such as reducing inventory and simplifying programming. The Cell Formation Problem is an NP-hard problem; therefore, exact methods cannot be used to solve large problems within a reasonabletime, whereas heuristics can generate solutions of lower quality, but in a reasonable execution time. We suggest in this work, three different metaheuristics to solve the cell formation problem having two objectives functions: cell autonomy and load balancing between the cells.We compare numerically these metaheuristics. Furthermore, for problems of smaller dimension that can be solved exactly with CPLEX, we verify that the metaheuristics can reach the optimal value.
Group technology techniques are now widely used in many manufacturing systems. Those techniques aim to decompose industrial systems into subsystems or cells of parts and machines. The problem of finding the most effectivegroup technology is formulated in operations research as the Cell Formation Problem. Several criteria can be used to specify the optimal solution such as flood intercellular, intracellular load balancing, etc. Solving this problem leads to several advantages such as reducing inventory and simplifying programming. The Cell Formation Problem is an NP-hard problem; therefore, exact methods cannot be used to solve large problems within a reasonabletime, whereas heuristics can generate solutions of lower quality, but in a reasonable execution time. We suggest in this work, three different metaheuristics to solve the cell formation problem having two objectives functions: cell autonomy and load balancing between the cells.We compare numerically these metaheuristics. Furthermore, for problems of smaller dimension that can be solved exactly with CPLEX, we verify that the metaheuristics can reach the optimal value.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.