Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Programme
Mots-clés
- RuO2
- Protic ionic liquids
- Porous micro-supercapacitor
- Ionogel
- Pseudocapacitance
Organisme subventionnaire
Résumé
The rapid advancement of the Internet of things (IoT) with applications across various sectors urges the development of miniaturized energy-storage devices that can harvest or deliver energy with high power capabilities. While micro-supercapacitors can meet the high-power requirements of ubiquitous sensors connected to IoT networks, their low voltage and low energy density remain a major bottleneck preventing their wide-scale adoption. In this report, we develop micro-supercapacitors using RuO2 electrodes providing pseudocapacitive charge storage in protic ionic liquid-based non-aqueous electrolytes while enlarging their operational voltage. The triethylammonium bis(trifluoromethanesulfonyl)imide (TEAH-TFSI)-based interdigitated porous RuO2 micro-supercapacitors showed an extended cell voltage up to 2 V with 4 times more energy density compared with conventional H2SO4 electrolyte. We then developed an all-solid-state micro-supercapacitor using TEAH-TFSI-based ionogel electrolyte able to deliver high areal capacitance (79 mF cm−2 at 2 mV s−1) and long-term cycling stability that is superior to state-of-the-art ionogel-based micro-supercapacitors employing carbon-based or pseudocapacitive materials. This study gives a new perspective to develop all-solid-state micro-supercapacitors using pseudocapacitive active materials that can operate in ionic-liquid-based non-aqueous electrolytes compatible with on-chip IoT-based device applications seeking high areal energy/power performance.