Factorized second order methods in neural networks


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Programme

Affiliation

Mots-clés

  • Apprentissage automatique
  • Apprentissage profond
  • Optimisation
  • Second ordre
  • Gradient naturel
  • Machine learning
  • Deep learning
  • Optimization
  • Second order
  • Natural gradient

Organisme subventionnaire

Résumé

Les méthodes d'optimisation de premier ordre (descente de gradient) ont permis d'obtenir des succès impressionnants pour entrainer des réseaux de neurones artificiels. Les méthodes de second ordre permettent en théorie d'accélérer l'optimisation d'une fonction, mais dans le cas des réseaux de neurones le nombre de variables est bien trop important. Dans ce mémoire de maitrise, je présente les méthodes de second ordre habituellement appliquées en optimisation, ainsi que des méthodes approchées qui permettent de les appliquer aux réseaux de neurones profonds. J'introduis un nouvel algorithme basé sur une approximation des méthodes de second ordre, et je valide empiriquement qu'il présente un intérêt pratique. J'introduis aussi une modification de l'algorithme de rétropropagation du gradient, utilisé pour calculer efficacement les gradients nécessaires aux méthodes d'optimisation.


First order optimization methods (gradient descent) have enabled impressive successes for training artificial neural networks. Second order methods theoretically allow accelerating optimization of functions, but in the case of neural networks the number of variables is far too big. In this master's thesis, I present usual second order methods, as well as approximate methods that allow applying them to deep neural networks. I introduce a new algorithm based on an approximation of second order methods, and I experimentally show that it is of practical interest. I also introduce a modification of the backpropagation algorithm, used to efficiently compute the gradients required in optimization.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.