Prediction of scoliosis curve type based on the analysis of trunk surface topography


Contribution à un congrès / Conference object
En cours de chargement...
Vignette d'image

Date de publication

Contributrices et contributeurs

Direction de recherche

Publié dans

IEEE International Symposium on Biomedical Imaging : from Nano to Macro

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Programme

Mots-clés

  • Pattern classification Scoliosis Surface topography

Organisme subventionnaire

CIHR / IRSC

Résumé

Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.