L'invariant de Gromov-Witten


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Affiliation

Mots-clés

  • Gromov-Witten invariant
  • Gromov invariant
  • Symplectic topology
  • Topology
  • Invariant de Gromov-Witten
  • Invariant de Gromov
  • Topologie symplectique
  • Topologie

Organisme subventionnaire

Résumé

Ce mémoire revient sur l'invariant de Gromov-Witten dans le contexte de topologie symplectique. D'abord, on présente un survol des notions nécessaires de la topologie symplectique, qui inclut les espaces vectoriels symplectiques, les variétés symplectiques, les structures presque complexes et la première classe de Chern. Ensuite, on présente une définition de l'invariant de Gromov-Witten, qui utilise les courbes pseudoholomorphes, les espaces de modules ainsi que les applications d'évaluation. Finalement, on donne quelques exemples de calcul d'invariant à la fin de ce mémoire.


The present work reviews the Gromov-Witten invariant in the context of symplectic topology. First, we showcase the basic concepts required for the understanding of the matter, which includes symplectic vector spaces, symplectic manifolds, almost complex structures and the first Chern class. Then, we provide a definition of the Gromov-Witten invariant, after studying pseudoholomorphic curves, moduli spaces and evaluation maps. In the end, we present some examples of Gromov-Witten invariant calculations.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.