La survenue des catastrophes naturelles : classification des variables explicatives par les réseaux de neurones


Article
Version publiée / Version of Record

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Éthique et économique = Ethics and economics

Date de la Conférence

Lieu de la Conférence

Éditeur

Centre de recherche en éthique de l'Université de Montréal

Cycle d'études

Programme

Mots-clés

  • Ethics
  • Éthique
  • Risk management
  • Neural network
  • Economics
  • Économie
  • Catastrophe naturelle
  • Économie urbaine
  • Gestion des risques majeurs
  • Natural disasters
  • Réseaux de neurones artificielles
  • Urban economics

Organisme subventionnaire

Résumé

Résumé

Durant les dernières décennies, l’occurrence des catastrophes naturelles a été fortement à la hausse. En effet, les catastrophes naturelles sont devenues de plus en plus fréquentes. En fait, ces risques dévastateurs ont touché durant les années précédentes différents pays dans des zones très diversifiées et continueront très probablement à être de réelles menaces dans le monde. Puisqu’aucun pays n’est à l’abri des catastrophes naturelles, il s’avère alors utile d’étudier les facteurs déterminants de leur survenue notamment avec la restriction de leurs périodes de retour et donc l’augmentation de leurs chances d’occurrence. Il nous a donc semblé opportun de tester les facteurs sous-jacents de la survenue des catastrophes naturelles. Notre travail se base sur l’application d’un réseau neuronal de type perceptron multicouche pour prédire le nombre des catastrophes naturelles à partir des variables les plus connues théoriquement. Ainsi, nous allons utiliser ce modèle neuronal pour effectuer l’analyse de sensitivité. Cette dernière permet de classer les variables explicatives selon l’importance de leur contribution dans la détermination du nombre de catastrophes naturelles comptabilisées durant la période d’étude. Les résultats obtenus ont montré que le réseau retenu peut prédire le nombre des catastrophes naturelles. De même, les différentes variables possèdent un effet considérable sur la sortie du réseau neuronal mais selon différents ordres d’importance. De ce fait, toutes ces variables contribuent à l’explication d’un problème aussi complexe comme la survenue des catastrophes naturelles.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.