Régression logistique bayésienne : comparaison de densités a priori
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Régression logistique
- Bayésien
- Densité a priori
- Simulation MCMC
- Logistic regression
- Bayesian
- Prior density
- MCMC simulation
Organisme subventionnaire
Résumé
Résumé
La régression logistique est un modèle de régression linéaire généralisée
(GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à
estimer la probabilité de succès de cette variable par la linéarisation de variables
explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact
de différents incitatifs d’une campagne marketing (coefficients de la régression
logistique), l’identification de la méthode d’estimation la plus précise
est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage
par tranche, différentes densités a priori spécifiées selon différents types de
densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons
sont appliquées sur des échantillons de différentes tailles et générées par différentes
probabilités de succès. L’estimateur du maximum de vraisemblance, la
méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos
résultats démontrent que trois méthodes d’estimations obtiennent des estimations
qui sont globalement plus précises pour les coefficients de la régression
logistique : la méthode MCMC d’échantillonnage par tranche avec une densité
a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage
par tranche avec une densité Student à 3 degrés de liberté aussi centrée
en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité
Cauchy centrée en 0 de paramètre d’échelle 2,5.
Logistic regression is a model of generalized linear regression (GLM) used to explain binary variables. The model seeks to estimate the probability of success of this variable by the linearization of explanatory variables. When the goal is to estimate more accurately the impact of various incentives from a marketing campaign (coefficients of the logistic regression), the identification of the choice of the optimum prior density is sought. In our simulations, using the MCMC method of slice sampling, we compare different prior densities specified by different types of density, location and scale parameters. These comparisons are applied to samples of different sizes generated with different probabilities of success. The maximum likelihood estimate, Gelman’s method and Genkin’s method complement the comparative. Our simulations demonstrate that the MCMC method with a normal prior density centered at 0 with variance of 3,125, the MCMC method with a Student prior density with 3 degrees of freedom centered at 0 with variance of 3,125 and Gelman’s method with a Cauchy density centered at 0 with scale parameter of 2,5 get estimates that are globally the most accurate of the coefficients of the logistic regression.
Logistic regression is a model of generalized linear regression (GLM) used to explain binary variables. The model seeks to estimate the probability of success of this variable by the linearization of explanatory variables. When the goal is to estimate more accurately the impact of various incentives from a marketing campaign (coefficients of the logistic regression), the identification of the choice of the optimum prior density is sought. In our simulations, using the MCMC method of slice sampling, we compare different prior densities specified by different types of density, location and scale parameters. These comparisons are applied to samples of different sizes generated with different probabilities of success. The maximum likelihood estimate, Gelman’s method and Genkin’s method complement the comparative. Our simulations demonstrate that the MCMC method with a normal prior density centered at 0 with variance of 3,125, the MCMC method with a Student prior density with 3 degrees of freedom centered at 0 with variance of 3,125 and Gelman’s method with a Cauchy density centered at 0 with scale parameter of 2,5 get estimates that are globally the most accurate of the coefficients of the logistic regression.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.