Coreference resolution with and for Wikipedia


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Programme

Affiliation

Mots-clés

  • Résolution de Coréférences
  • Création du corpus
  • Wikipédia
  • Coreference Resolution
  • Corpus Creation
  • Wikipedia

Organisme subventionnaire

Résumé

Résumé

Wikipédia est une ressource embarquée dans de nombreuses applications du traite- ment des langues naturelles. Pourtant, aucune étude à notre connaissance n’a tenté de mesurer la qualité de résolution de coréférence dans les textes de Wikipédia, une étape préliminaire à la compréhension de textes. La première partie de ce mémoire consiste à construire un corpus de coréférence en anglais, construit uniquement à partir des articles de Wikipédia. Les mentions sont étiquetées par des informations syntaxiques et séman- tiques, avec lorsque cela est possible un lien vers les entités FreeBase équivalentes. Le but est de créer un corpus équilibré regroupant des articles de divers sujets et tailles. Notre schéma d’annotation est similaire à celui suivi dans le projet OntoNotes. Dans la deuxième partie, nous allons mesurer la qualité des systèmes de détection de coréférence à l’état de l’art sur une tâche simple consistant à mesurer les mentions du concept décrit dans une page Wikipédia (p. ex : les mentions du président Obama dans la page Wiki- pédia dédiée à cette personne). Nous tenterons d’améliorer ces performances en faisant usage le plus possible des informations disponibles dans Wikipédia (catégories, redi- rects, infoboxes, etc.) et Freebase (information du genre, du nombre, type de relations avec autres entités, etc.).
Wikipedia is a resource of choice exploited in many NLP applications, yet we are not aware of recent attempts to adapt coreference resolution to this resource, a prelim- inary step to understand Wikipedia texts. The first part of this master thesis is to build an English coreference corpus, where all documents are from the English version of Wikipedia. We annotated each markable with coreference type, mention type and the equivalent Freebase topic. Our corpus has no restriction on the topics of the documents being annotated, and documents of various sizes have been considered for annotation. Our annotation scheme follows the one of OntoNotes with a few disparities. In part two, we propose a testbed for evaluating coreference systems in a simple task of measuring the particulars of the concept described in a Wikipedia page (eg. The statements of Pres- ident Obama the Wikipedia page dedicated to that person). We show that by exploiting the Wikipedia markup (categories, redirects, infoboxes, etc.) of a document, as well as links to external knowledge bases such as Freebase (information of the type, num- ber, type of relationship with other entities, etc.), we can acquire useful information on entities that helps to classify mentions as coreferent or not.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.