Critical process temperatures for resistive InGaAsP/InP heterostructures heavily implanted by Fe or Ga ions


Article
Version originale de l'auteur / Author's Original

Date de publication

Contributrices et contributeurs

Direction de recherche

Publié dans

Nuclear instruments and methods in physics research section B

Date de la Conférence

Lieu de la Conférence

Éditeur

Elsevier

Cycle d'études

Programme

Mots-clés

  • III–V semiconductors
  • Ion implantation
  • Primary and secondary defects
  • Hall effect
  • X-ray diffraction

Organisme subventionnaire

Résumé

We report on critical ion implantation and rapid thermal annealing (RTA) process temperatures that produce resistive Fe- or Ga-implanted InGaAsP/InP heterostructures. Two InGaAsP/InP heterostructure compositions, with band gap wavelengths of 1.3 μm and 1.57 μm, were processed by ion implantation sequences done at multiple MeV energies and high fluence (1015 cm−2). The optimization of the fabrication process was closely related to the implantation temperature which influences the type of implant-induced defect structures. With hot implantation temperatures, at 373 K and 473 K, X-ray diffraction (XRD) revealed that dynamic defect annealing was strong and prevented the amorphization of the InGaAsP layers. These hot-implanted layers were less resistive and RTA could not optimize them systematically in favor of high resistivity. With cold implantation temperatures, at 83 K and even at 300 K, dynamic annealing was minimized. Damage clusters could form and accumulate to produce resistive amorphous-like structures. After recrystallization by RTA, polycrystalline signatures were found on every low-temperature Fe- and Ga-implanted structures. For both ion species, electrical parameters evolved similarly against annealing temperatures, and resistive structures were produced near 500 °C. However, better isolation was obtained with Fe implantation. Differences in sheet resistivities between the two alloy compositions were less than band gap-related effects. These observations, related to damage accumulation and recovery mechanisms, have important implications for the realization ion-implanted resistive layers that can be triggered with near infrared laser pulses and suitable for ultrafast optoelectronics.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.