Le théorème de lebesgue sur la dérivabilité des fonctions à variation bornée
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Dérivée
- Fonction
- Monotonic
- Bounded variation
- Intervalle
- Mesure
- Monotone
- Variation bornée
- Derivative
- Function
- Interval
- Measure
Organisme subventionnaire
Résumé
Résumé
Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants
et des plus importants de l'analyse mathématique ; à savoir qu'une fonction
à variation bornée est dérivable presque partout. Le but de ce travail est de fournir,
à part la démonstration souvent proposée dans les cours de la théorie de la
mesure, d'autres démonstrations élaborées avec des outils mathématiques plus
simples. Ma contribution a consisté essentiellement à détailler et à compléter ces
démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité.
Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes,
en proposer l'historique et trois démonstrations différentes.
In this dissertation, we will be handling a theorem of Lebesgue, one of the most stricking and ultimate of mathematical analysis ; namely a function with bounded variation has a derivative almost everywhere. The aim of our research is to provide, apart from the proof usually offered in measure theory courses, other demontrations achieved with more simple mathematical tools. My contribution was primarily to simplify and to complete these demonstrations, to include the most of the drawings in order to visualize what is being said. For this theorem, which has other presentations, we will give now the history and three different demonstrations.
In this dissertation, we will be handling a theorem of Lebesgue, one of the most stricking and ultimate of mathematical analysis ; namely a function with bounded variation has a derivative almost everywhere. The aim of our research is to provide, apart from the proof usually offered in measure theory courses, other demontrations achieved with more simple mathematical tools. My contribution was primarily to simplify and to complete these demonstrations, to include the most of the drawings in order to visualize what is being said. For this theorem, which has other presentations, we will give now the history and three different demonstrations.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.