Linnik's theorem : a comparison of the classical and the pretentious approach
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Linnik
- Zéros des fonctions L de Dirichlet
- Théorie prétentieuse des nombres
- Théorème de Halasz
- Zeros of Dirichlet L-functions
- Pretentiousness
- Halasz's theorem
Organisme subventionnaire
Résumé
Résumé
Le but de ce mémoire est de comprendre le théorème de Linnik. Il nous donne une borne supérieure pour le premier nombre premier dans une progression arithmétique. Nous allons analyser et comparer deux méthodes distinctes: la classique et la prétentieuse. La première est basée sur les zéros des fonctions L de Dirichlet. La seconde méthode repose sur le théorème de Halasz ainsi que sur la distance entre deux fonctions. Cette approche a été développée par Granville et Soundarajan.
The goal of this master's thesis is to understand Linnik's theorem, which gives us an upper bound for the first prime number in an arithmetic progression. We will analyze and compare two distinct methods: the classical approach and the pretentious approach. The first one relies on zeros of Dirichlet L-functions. The second one is based on Halász's theorem and distance functions. It was developped by Granville annd Soundarajan.
The goal of this master's thesis is to understand Linnik's theorem, which gives us an upper bound for the first prime number in an arithmetic progression. We will analyze and compare two distinct methods: the classical approach and the pretentious approach. The first one relies on zeros of Dirichlet L-functions. The second one is based on Halász's theorem and distance functions. It was developped by Granville annd Soundarajan.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.