Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in Zebrafish


Article
Version acceptée / Accepted Manuscript

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Biomaterials

Date de la Conférence

Lieu de la Conférence

Éditeur

Elsevier

Cycle d'études

Programme

Mots-clés

  • Blood-brain barrier
  • Diblock
  • Nanoparticle
  • Nanoscale flow cytometry
  • PEG-b-PLA
  • PMPC-b-PLA
  • Raw 264.7
  • Zebrafish
  • bEnd.3

Organisme subventionnaire

Résumé

Zwitterion polymers with strong antifouling properties have been suggested as the prime alternative to polyethylene glycol (PEG) for drug nanocarriers surface coating. It is believed that PEG coating shortcomings, such as immune responses and incomplete protein repellency, could be overcome by zwitterionic polymers. However, no systematic study has been conducted so far to complete a comparative appraisal of PEG and zwitterionic-coating effects on nanoparticles (NPs) stealthness, cell uptake, cell barrier translocation and biodistribution in the context of nanocarriers brain targeting.

Core-shell polymeric particles with identical cores and a shell of either PEG or poly(2-methacryloyloxyethyl phosphorylcholine (PMPC) were prepared by impinging jet mixer nanoprecipitation. NPs with similar size and surface potential were systematically compared using in vitro and in vivo assays. NPs behavior differences were rationalized based on their protein-particles interactions.

PMPC-coated NPs were significantly more endocytosed by mouse macrophages or brain resident macrophages compared to PEGylated NPs but exhibited the remarkable ability to cross the blood-brain barrier in in vitro models. Nanoscale flow cytometry assays showed significantly more adsorbed proteins on PMPC-coated NPs than PEG-coated NPs. In vivo, distribution in zebrafish larvae, showed a strong propensity for PMPC-coated NPs to adhere to the vascular endothelium, while PEG-coated NPs were able to circulate for a longer time and escape the bloodstream to penetrate deep into the cerebral tissue.

The stark differences between these two types of particles, besides their similarities in size and surface potential, points towards the paramount role of surface chemistry in controlling NPs fate likely via the formation of distinct protein corona for each coating.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.