Étude de la coalescence de nanogouttelettes par dynamique moléculaire
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Coalescence
- Coalescence evolution
- Nano-gouttelettes liquide
- Nanodroplets
- Dynamique moléculaire
- Molecular Dynamics
- Régime visqueux
- Viscous regime
- Régime inertiel
- Inertial regime
Organisme subventionnaire
Résumé
Résumé
Ce travail est consacré à l’étude de la coalescence de gouttelettes liquides à l’échelle du
nanomètre. Nous nous sommes intéressés principalement à l’évolution du changement
topologique des gouttelettes à partir de la rupture des surfaces au moment du contact
initial jusqu’à la coalescence complète. Nous utilisons la dynamique moléculaire afin
de simuler plusieurs types de gouttelettes soit en utilisant le potentiel empirique de type
Stillinger-Weber pour des gouttelettes de silicium (l-Si) en 3 dimensions et le modèle
Embedded Atom Method pour des gouttelettes de cuivre liquide (l-Cu) en 2d, quasi-2d
(disques) et 3 dimensions.
Qualitativement, toutes les simulations démontrent une coalescence similaire indépendamment
de la dimension de calcul (2d à 3d), de la taille et de la température initiale
des gouttelettes. La coalescence évolue par une déformation rapide des surfaces sans
mixage important entre les atomes des deux gouttelettes initiales.
De plus, nous étudions l’évolution du col de coalescence formé lors du contact initial
entre les gouttelettes et, pour les systèmes en 3d, nous observons une transition claire
d’un régime visqueux vers un régime inertiel du rayon de ce col, tel que suggéré par des
modèles théoriques.
Pour les gouttelettes de cuivre nous observons exactement le comportement des prédictions
analytiques et confirmons que le premier régime suit un comportement visqueux
sans aplatissement local des gouttelettes. La situation est différente pour les gouttelettes
de l-Si où nous observons un effet plus grand, par rapport aux prédictions analytiques, du
rayon et de la température initiale des gouttelettes sur l’évolution du col de coalescence.
Nous suggérons que les paramètres décrivant l’évolution de la coalescence dépendent
des propriétés des matériaux utilisés contrairement à la théorie universelle couramment
utilisée.
In this work we studied the coalescence of liquid nanodroplets and more specifically the topological deformation from their rupture at the initial contact to the full coalescence. We used molecular dynamics to simulate various liquid droplets: 3 dimension liquid silicon (l-Si) droplets using the Stillinger-Weber potential as well as 2d, quasi-2d (discs) and 3d liquid copper (l-Cu) droplets using the Embedded Atom Model semi empirical potential. All simulations showed similar qualitative coalescence independently of initial size and temperature for 2d, quasi-2d and 3d systems: the topological deformation evolved quickly without any important mixing taking place between atoms from both droplets. Furthermore, we studied the evolution of the radius of the liquid bridge formed between the droplets and demonstrated that it is possible to observe, using molecular dynamics, a transition from a viscous to inertial regime of this bridge, as suggested by analytical models. Studying the l-Cu droplets, we observe exactly the analytical predicted behavior of the coalescence evolution and confirm that the initial regime follows a viscous driven mechanism without any local flattening of the droplets. The results are different with the l-Si droplets where we observe a greater effect, compared to analytical models, of the initial droplets radius and temperature on the bridge evolution. This suggests that the parameters describing the coalescence process are dependent of the properties of the materials used in the coalescence instead of the present universal accepted models.
In this work we studied the coalescence of liquid nanodroplets and more specifically the topological deformation from their rupture at the initial contact to the full coalescence. We used molecular dynamics to simulate various liquid droplets: 3 dimension liquid silicon (l-Si) droplets using the Stillinger-Weber potential as well as 2d, quasi-2d (discs) and 3d liquid copper (l-Cu) droplets using the Embedded Atom Model semi empirical potential. All simulations showed similar qualitative coalescence independently of initial size and temperature for 2d, quasi-2d and 3d systems: the topological deformation evolved quickly without any important mixing taking place between atoms from both droplets. Furthermore, we studied the evolution of the radius of the liquid bridge formed between the droplets and demonstrated that it is possible to observe, using molecular dynamics, a transition from a viscous to inertial regime of this bridge, as suggested by analytical models. Studying the l-Cu droplets, we observe exactly the analytical predicted behavior of the coalescence evolution and confirm that the initial regime follows a viscous driven mechanism without any local flattening of the droplets. The results are different with the l-Si droplets where we observe a greater effect, compared to analytical models, of the initial droplets radius and temperature on the bridge evolution. This suggests that the parameters describing the coalescence process are dependent of the properties of the materials used in the coalescence instead of the present universal accepted models.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.