Approaches to Boyd’s conjectures and their applications
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Doctorat / Doctoral
Programme
Affiliation
Mots-clés
- Mahler measure
- L-function of elliptic curve
- Regulator
- Bloch-Wigner dilogarithm
- Volume of a hyperbolic 3- manifold
- Mesure de Mahler
- Fonction L de courbe elliptique
- Régulateur
- Dilogarithme de Bloch-Wigner
- Volume d’une variété hyperbolique 3D
Organisme subventionnaire
Résumé
Résumé
Dans cette thèse, nous considérons quatre cas de conjectures de Boyd pour la mesure de Mahler de polynômes. Le premier cas concerne un polynôme associé à une courbe de genre 1, deux autres cas couvrent des courbes de genre 2, et le dernier cas traite d’une courbe de genre 3.
Pour le cas de la courbe de genre 1, nous étudions une identité conjecturée par Boyd et prouvée par Boyd et Rodriguez-Villegas. On trouve un expression de la mesure de Mahler donnée par une combinaison linéaire de certaines valeurs du dilogarithme de Bloch-Wigner. En combinant cela avec le résultat prouvé par Boyd et Rodriguez-Villegas, nous pouvons établir certaines identités entre différentes valeurs du dilogarithme de Bloch-Wigner.
Pour les problèmes liés aux courbes de genre 2, nous utilisons le régulateur elliptique pour récupérer des identités entre les mesures de Mahler des certaines familles de courbes de genre 2 qui ont ́eté conjecturées par Boyd et prouvèes par Bertin et Zudilin en différenciant le paramètre des formules de la mesure de Mahler et en utilisant des identités hypergéométriques.
Pour le cas impliquant la courbe de genre 3, nous utilisons le régulateur elliptique pour prouver une identité entièrement nouvelle entre les mesures de Mahler d’une famille polynomiale de genre 3 et d’une famille polynomiale de genre 1 qui à été initialement conjectur ́ee par Liu et Qin.
Comme nos preuves pour les cas des courbes des genres 2 et 3 impliquent le régulateur, elles éclairent la relation des mesures de Mahler des familles des genres 2 ou 3 avec des valeurs spéciales des fonctions L associées aux familles de genre 1.
In this dissertation, we consider four cases of Boyd’s conjectures for the Mahler measure of polynomials. The first case involves a polyno- mial defining a genus 1 curve, two other cases cover genus 2 curves, and the final case deals with a genus 3 curve. For the case of the genus 1 curve, we study an identity conjectured by Boyd and proven by Boyd and Rodriguez-Villegas. We find an expression of the Mahler measure given by a linear combination of some values of the Bloch-Wigner dilogarithm. Combining this with the result proven by Boyd and Rodriguez-Villegas, we can establish some identities among different values of the Bloch-Wigner dilogarithm. For the problems related to the genus 2 curves, we use the elliptic regulator to recover some identities between Mahler measures involving certain families of genus 2 curves that were conjectured by Boyd and proven by Bertin and Zudilin by differentiating the parameter in the Mahler measure formulas and using hypergeometric identities. For the case involving the genus 3 curve, we use the elliptic regulator to prove an entirely new identity between the Mahler measures of a genus 3 polynomial family and of a genus 1 polynomial family that was initially conjectured by Liu and Qin. Since our proofs for the cases of genus 2 and 3 curves involve the regulator, they yield light into the relation of the Mahler measures of the genus 2 or 3 families with special values of the L-functions associ- ated to the genus 1 families.
In this dissertation, we consider four cases of Boyd’s conjectures for the Mahler measure of polynomials. The first case involves a polyno- mial defining a genus 1 curve, two other cases cover genus 2 curves, and the final case deals with a genus 3 curve. For the case of the genus 1 curve, we study an identity conjectured by Boyd and proven by Boyd and Rodriguez-Villegas. We find an expression of the Mahler measure given by a linear combination of some values of the Bloch-Wigner dilogarithm. Combining this with the result proven by Boyd and Rodriguez-Villegas, we can establish some identities among different values of the Bloch-Wigner dilogarithm. For the problems related to the genus 2 curves, we use the elliptic regulator to recover some identities between Mahler measures involving certain families of genus 2 curves that were conjectured by Boyd and proven by Bertin and Zudilin by differentiating the parameter in the Mahler measure formulas and using hypergeometric identities. For the case involving the genus 3 curve, we use the elliptic regulator to prove an entirely new identity between the Mahler measures of a genus 3 polynomial family and of a genus 1 polynomial family that was initially conjectured by Liu and Qin. Since our proofs for the cases of genus 2 and 3 curves involve the regulator, they yield light into the relation of the Mahler measures of the genus 2 or 3 families with special values of the L-functions associ- ated to the genus 1 families.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.