Hamiltoniens locaux et information quantique en dimensions réduites
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Doctorat / Doctoral
Programme
Affiliation
Mots-clés
- Information quantique
- Calcul quantique
- Frustrated spin chains
- Low-dimensional quantum field theory
- Lifshitz theories
- Rokhsar-Kivelson structure
- Corrélations et intrication
- Chaînes de spins frustrées
- Théories de champs quantiques en dimensions réduites
- Théories Lifshitz
- Structure de Rokhsar-Kivelson
- Quantum information
- Quantum computation
- Correlations and entanglement
Organisme subventionnaire
Résumé
Résumé
Cette thèse exploite les liens profonds entre la physique des systèmes quantiques
locaux, les propriétés non locales de leurs états fondamentaux et le contenu en information
de ces états. Les deux premiers chapitres sont consacrés à l’application des
systèmes quantiques locaux pour les fins d’une tâche informationnelle précise, soit le
calcul quantique. Au terme d’un bref survol de la théorie, nous proposons un patron
pour le calcul quantique universel et évolutif pouvant être réalisé sur une grande
variété de plateformes physiques, et démontrons qu’il est particulièrement résilient
face à un bruit anisotrope. Les quatre derniers chapitres sont pour leur part consacrés
à l’approche informationnelle des systèmes quantiques à corps multiples. Nous
décrivons les principales propriétés des corrélations et de l’intrication dans les états
fondamentaux des systèmes de dimensions réduites les plus courants, en distinguant
systèmes non critiques et systèmes critiques. Nous montrons que ces propriétés sont
fortement modifiées par la présence de frustration géométrique dans les chaînes de
spins. Enfin, nous réalisons une analyse exhaustive des corrélations et de l’intrication
dans les états fondamentaux de deux théories quantiques de champs non triviales.
This thesis exploits the deep connections between the physics of local quantum systems, the nonlocal features in their ground states, and the information content of these states. The first two chapters are dedicated to the application of local quantum systems for the purpose of a definite information-theoretical task, namely quantum computation. After a brief survey of the theory, we propose a scheme for scalable universal quantum computation that, we argue, could be implemented on a wide variety of physical platforms, and show that it is particularly resilient to anisotropic noise. The last four chapters are dedicated to the information-theoretical approach of many-body quantum systems. We describe the main properties of correlations and entanglement in the ground states of the most common low-dimensional many-body systems, distinguishing between noncritical systems and critical ones. We show how these properties can be dramatically modified by the presence of geometric frustration in spin chains. Finally, we perform an intensive study of correlations and entanglement in the ground states of two nontrivial one-dimensional quantum field theories.
This thesis exploits the deep connections between the physics of local quantum systems, the nonlocal features in their ground states, and the information content of these states. The first two chapters are dedicated to the application of local quantum systems for the purpose of a definite information-theoretical task, namely quantum computation. After a brief survey of the theory, we propose a scheme for scalable universal quantum computation that, we argue, could be implemented on a wide variety of physical platforms, and show that it is particularly resilient to anisotropic noise. The last four chapters are dedicated to the information-theoretical approach of many-body quantum systems. We describe the main properties of correlations and entanglement in the ground states of the most common low-dimensional many-body systems, distinguishing between noncritical systems and critical ones. We show how these properties can be dramatically modified by the presence of geometric frustration in spin chains. Finally, we perform an intensive study of correlations and entanglement in the ground states of two nontrivial one-dimensional quantum field theories.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.