Généralisation du théorème central limite conditionné sur l'environnement d'une marche aléatoire biaisé sur un arbre aléatoire
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Marches aléatoires en milieux aléatoires (MAMA)
- Arbres de Galton-Watson
- Structure de renouvellement
- Random walks on random environments (RWRE)
- Galton-Watson trees
- Renewal structure
Organisme subventionnaire
Résumé
Résumé
Nous nous penchons sur les fluctuations des marches dans plusieurs modèles de marches aléatoires en milieux aléatoires. En particulier, le résultat principal de ce mémoire est de prouver qu'il existe un théorème central limite trempé pour la marche aléatoire sur un arbre de Galton-Watson infini avec feuilles équipé de biais aléatoires plus grand que 1. Un tel théorème a été prouvé dans le cas où le biais est constant dans [1]; il s'agit donc de généraliser ce théorème.
We examine the fluctuations of walks in multiple models of random walks in random environments. In particular, the primary result of this dissertation is to prove there exists a quenched central limit theorem for the random on an infinite Galton-Watson tree with leaves equiped with random biases greater than 1. Such a theorem has already been proven in the case where the bias is constant in [1]; this is a generalization of that theorem.
We examine the fluctuations of walks in multiple models of random walks in random environments. In particular, the primary result of this dissertation is to prove there exists a quenched central limit theorem for the random on an infinite Galton-Watson tree with leaves equiped with random biases greater than 1. Such a theorem has already been proven in the case where the bias is constant in [1]; this is a generalization of that theorem.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.