Les oscillations torsionnelles dans la zone de convection solaire
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Zone de convection
- Magnétohydrodynamique
- Oscillations : solaires
- Convection zone
- Magnetohydrodynamics
- Oscillations : solar
Organisme subventionnaire
Résumé
Résumé
Nous analysons les oscillations torsionnelles se développant dans une simulation magnétohydrodynamique
de la zone de convection solaire produisant des champs magnétiques
de type solaire (champs axisymétriques subissant des inversions de polarités régulières
sur des échelles temporelles décadaires). Puisque ces oscillations sont également
similaires à celles observées dans le Soleil, nous analysons les dynamiques zonales aux
grandes échelles. Nous séparons donc les termes aux grandes échelles (force de Coriolis
exercée sur la circulation méridienne et les champs magnétiques aux grandes échelles)
de ceux aux petites échelles (les stress de Reynolds et de Maxwell). En comparant les
flux de moments cinétiques entre chacune des composantes, nous nous apercevons que
les oscillations torsionnelles sont maintenues par l’écoulement méridien aux grandes
échelles, lui même modulé par les champs magnétiques. Une analyse d’échange d’énergie
confirme ce résultat, puisqu’elle montre que seul le terme comprenant la force de
Coriolis injecte de l’énergie dans l’écoulement. Une analyse de la dynamique rotationnelle
ayant lieu à la limite de la zone stable et de la zone de convection démontre que
celle-ci est fortement modifiée lors du passage de la base des couches convectives à la
base de la fine tachocline s’y formant juste en-dessous. Nous concluons par une discussion
au niveau du mécanisme de saturation en amplitude dans la dynamo s’opérant dans
la simulation ainsi que de la possibilité d’utiliser les oscillations torsionnelles comme
précurseurs aux cycles solaires à venir.
We study torsional oscillations developping in a magnetohydrodynamic simulation of the solar convective layers producing solar-like magnetic cycles (large-scale axisymmetric fields subjected to regular polarity reversals). Since these oscillations are similar to those observed in the Sun, we perform an analysis of large-scale zonal dynamics. We separate the large-scale terms (Coriolis force exerted on the meridional circulation and large-scale magnetic fields) from the small-scale contributions (Reynolds and Maxwell stresses). Upon comparing angular momentum fluxes between each of those components, we find that torsional oscillations are driven by the large-scale meridional flow, itself modulated by magnetic fields. An analysis of energy transfers confirms this result, where we see that only the Coriolis force term directly inputs energy in the flow. An analysis of angular momentum fluxes occuring at the interface between the stable and the convective zones shows that the local dynamics therein undergoes a complete shift in going from the base of the convective layers through the base of the thin tachocline developping just beneath it. We conclude by discussing the mechanism of amplitude saturation in the dynamo operating in the simulation and the possibility of using torsional oscillations as precursors to upcoming solar cycles.
We study torsional oscillations developping in a magnetohydrodynamic simulation of the solar convective layers producing solar-like magnetic cycles (large-scale axisymmetric fields subjected to regular polarity reversals). Since these oscillations are similar to those observed in the Sun, we perform an analysis of large-scale zonal dynamics. We separate the large-scale terms (Coriolis force exerted on the meridional circulation and large-scale magnetic fields) from the small-scale contributions (Reynolds and Maxwell stresses). Upon comparing angular momentum fluxes between each of those components, we find that torsional oscillations are driven by the large-scale meridional flow, itself modulated by magnetic fields. An analysis of energy transfers confirms this result, where we see that only the Coriolis force term directly inputs energy in the flow. An analysis of angular momentum fluxes occuring at the interface between the stable and the convective zones shows that the local dynamics therein undergoes a complete shift in going from the base of the convective layers through the base of the thin tachocline developping just beneath it. We conclude by discussing the mechanism of amplitude saturation in the dynamo operating in the simulation and the possibility of using torsional oscillations as precursors to upcoming solar cycles.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.