Surfaces de Riemann compactes et formule de trace d'Eichler
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Formule de trace d'Eichler
- Surfaces de Riemann
- Caractère
- Courbe de Klein
- Character
- Klein's curve
- Riemann surfaces
- Eichler's trace formula
- Automorphismes
- Automorphism
Organisme subventionnaire
Résumé
Résumé
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes.
Deux grand sujets seront traités.
Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes.
Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes.
Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème.
Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes.
In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces. Two principal subjects will be treated. First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism. Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials. We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem. Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces. Two principal subjects will be treated. First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism. Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials. We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem. Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.