Estimation de pose 2D par réseau convolutif
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Vision par ordinateur
- Estimation de pose
- Deep Learning
- Autoencoders
- Convolutional Neural Networks
- Synthetic Datasets
- Apprentissage machine
- Apprentissage profond
- Autoencodeurs
- Réseaux convolutifs
- Jeux de données synthétiques
- Computer Vision
- Pose Estimation
- Machine Learning
Organisme subventionnaire
Résumé
Résumé
Magic: The Gathering} est un jeu de cartes à collectionner stochastique à information imparfaite inventé par Richard Garfield en 1993. Le but de ce projet est de proposer un pipeline d'apprentissage machine permettant d'accomplir la détection et la localisation des cartes du jeu \textit{Magic} au sein d'une image typique des tournois de ce jeu. Il s'agit d'un problème de pose d'objets 2D à quatre degrés de liberté soit, la position sur deux axes, la rotation et l'échelle, dans un contexte où les cartes peuvent être superposées. À travers ce projet, nous avons développé une approche par données synthétiques à deux réseaux capable, collectivement d'identifier, et de régresser ces paramètres avec une précision significative. Dans le cadre de ce projet, nous avons développé un algorithme d'apprentissage profond par données synthétiques capable de positionner une carte avec une précision d'un demi pixel et d'une rotation de moins d'un degré. Finalement, nous avons montré que notre jeu de données synthétique est suffisamment réaliste pour permettre à nos réseaux de généraliser aux cas d'images réelles.
Magic: The Gathering} is an imperfect information, stochastic, collectible card game invented by Richard Garfield in 1993. The goal of this project is to propose a machine learning pipeline capable of detecting and localising \textit{Magic} cards within an image. This is a 2D pose problem with 4 degrees of freedom, namely translation in $x$ and $y$, rotation, and scale, in a context where cards can be superimposed on one another. We tackle this problem by relying on deep learning using a combination of two separate neural networks. Our final pipeline has the ability to tackle real-world images and gives, with a very good degree of precision, the poses of cards within an image. Through the course of this project, we have developped a method of realistic synthetic data generation to train both our models to tackle real world images. The results show that our pose subnetwork is able to predict position within half a pixel, rotation within one degree and scale within 2 percent.
Magic: The Gathering} is an imperfect information, stochastic, collectible card game invented by Richard Garfield in 1993. The goal of this project is to propose a machine learning pipeline capable of detecting and localising \textit{Magic} cards within an image. This is a 2D pose problem with 4 degrees of freedom, namely translation in $x$ and $y$, rotation, and scale, in a context where cards can be superimposed on one another. We tackle this problem by relying on deep learning using a combination of two separate neural networks. Our final pipeline has the ability to tackle real-world images and gives, with a very good degree of precision, the poses of cards within an image. Through the course of this project, we have developped a method of realistic synthetic data generation to train both our models to tackle real world images. The results show that our pose subnetwork is able to predict position within half a pixel, rotation within one degree and scale within 2 percent.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.