Rigidité du crochet de Poisson en topologie symplectique


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Affiliation

Mots-clés

  • Topologie symplectique
  • Crochet de Poisson
  • Dynamique hamiltonienne
  • Géométrie d'Hofer
  • Rigidité symplectique
  • Symplectic topology
  • Poisson bracket
  • Hamiltonian dynamics
  • Hofer geometry
  • Symplectic rigidity

Organisme subventionnaire

Résumé

Ce mémoire est une introduction aux phénomènes de rigidité C0 en topologie symplectique. Plus précisément, il sera question de la rigidité C0 du crochet de Poisson sur une variété symplectique. Les notions élémentaires de la géométrie symplectique et de la dynamique hamiltonienne sont rappelées au premier chapitre. Le second chapitre traite de la géométrie d’Hofer du groupe des difféomorphismes hamiltoniens d’une variété symplectique. Le chapitre 3 concerne l’application de la géométrie d’Hofer à l’étude de fonctionnelles définies à partir du crochet de Poisson. Le résultat principal qui est démontré, dû à Buhovski, Entov et Polterovich, est la semi-continuité inférieure dans la topologie C0 de la fonctionnelle qui associe à chaque paire de fonctions la norme uniforme de leur crochet de Poisson.


This master’s thesis is an introduction to C0 rigidity phenomena in symplectic topology. More precisely, the main concern is the C0 rigidity of the Poisson bracket on a symplectic manifold. The elementary notions of symplectic geometry and Hamiltonian dynamics are recalled in the first chapter. The second chapter introduces the Hofer geometry of the group of Hamiltonian diffeomorphisms of a symplectic manifold. Chapter 3 concerns the application of Hofer geometry to the study of functionals defined in terms of the Poisson bracket. The main result, due to Buhovski, Entov and Polterovich, is the lower semi-continuity of the functional which assigns to every pair of functions the uniform norm of their Poisson bracket.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.