Méthodes rapides et efficaces pour la résolution numérique d'équations de type Hamilton-Jacobi avec application à la simulation de feux de forêt


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Doctorat / Doctoral

Affiliation

Mots-clés

  • Équations aux dérivées partielles
  • Hamilton-Jacobi
  • homogenization
  • semi-implicit scheme
  • anisotropic firespread
  • forest fires
  • Richards' ellipse model
  • méthode level-set
  • homogénéisation
  • schéma semi-implicite
  • propagation anisotrope
  • feux de forêt
  • modèle de l'ellipse de Richards
  • Partial differential equations
  • Level-set method

Organisme subventionnaire

Résumé

Résumé

Cette thèse est divisée en trois chapitres. Le premier explique comment utiliser la méthode «level-set» de manière rigoureuse pour faire la simulation de feux de forêt en utilisant comme modèle physique pour la propagation le modèle de l'ellipse de Richards. Le second présente un nouveau schéma semi-implicite avec une preuve de convergence pour la solution d'une équation de type Hamilton-Jacobi anisotrope. L'avantage principal de cette méthode est qu'elle permet de réutiliser des solutions à des problèmes «proches» pour accélérer le calcul. Une autre application de ce schéma est l'homogénéisation. Le troisième chapitre montre comment utiliser les méthodes numériques des deux premiers chapitres pour étudier l'influence de variations à petites échelles dans la vitesse du vent sur la propagation d'un feu de forêt à l'aide de la théorie de l'homogénéisation.
This thesis is divided in three chapters. The first explains how to use the level-set method in a rigorous way in the context of forest fire simulation when the physical propagation model for firespread is Richards' ellipse model. The second chapter presents a new semi-implicit scheme with a proof of convergence for the numerical solution of an anisotropic Hamilton-Jacobi partial differential equation. The advantage of this scheme is it allows the use of approximative solutions as initial conditions which reduces the computation time. The third chapter shows how to use the tools introduced in the first two chapters to study the influence of small-scale variations on the wind speed on firespread using the theory of homogenization.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.