Financial time series analysis with competitive neural networks
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Self-organizing map
- Limit order book
- Stationarity
- Forecasting
- Réseau neuronal
- Analyse en composantes principales
- Classification hiérarchique
- Stationnarité
- Prévisions
- Neural network
- Principal component analysis
- Hierarchical clustering
Organisme subventionnaire
Résumé
Résumé
L’objectif principal de mémoire est la modélisation des données temporelles non stationnaires. Bien que les modèles statistiques classiques tentent de corriger les données non stationnaires en différenciant et en ajustant pour la tendance, je tente de créer des grappes localisées de données de séries temporelles stationnaires grâce à l’algorithme du « self-organizing map ». Bien que de nombreuses techniques aient été développées pour les séries chronologiques à l’aide du « self- organizing map », je tente de construire un cadre mathématique qui justifie son utilisation dans la prévision des séries chronologiques financières. De plus, je compare les méthodes de prévision existantes à l’aide du SOM avec celles pour lesquelles un cadre mathématique a été développé et qui n’ont pas été appliquées dans un contexte de prévision. Je compare ces méthodes avec la méthode ARIMA bien connue pour la prévision des séries chronologiques. Le deuxième objectif de mémoire est de démontrer la capacité du « self-organizing map » à regrouper des données vectorielles, puisqu’elle a été développée à l’origine comme un réseau neuronal avec l’objectif de regroupement. Plus précisément, je démontrerai ses capacités de regroupement sur les données du « limit order book » et présenterai diverses méthodes de visualisation de ses sorties.
The main objective of this Master’s thesis is in the modelling of non-stationary time series data. While classical statistical models attempt to correct non- stationary data through differencing and de-trending, I attempt to create localized clusters of stationary time series data through the use of the self-organizing map algorithm. While numerous techniques have been developed that model time series using the self-organizing map, I attempt to build a mathematical framework that justifies its use in the forecasting of financial times series. Additionally, I compare existing forecasting methods using the SOM with those for which a framework has been developed and which have not been applied in a forecasting context. I then compare these methods with the well known ARIMA method of time series forecasting. The second objective of this thesis is to demonstrate the self-organizing map’s ability to cluster data vectors as it was originally developed as a neural network approach to clustering. Specifically I will demonstrate its clustering abilities on limit order book data and present various visualization methods of its output.
The main objective of this Master’s thesis is in the modelling of non-stationary time series data. While classical statistical models attempt to correct non- stationary data through differencing and de-trending, I attempt to create localized clusters of stationary time series data through the use of the self-organizing map algorithm. While numerous techniques have been developed that model time series using the self-organizing map, I attempt to build a mathematical framework that justifies its use in the forecasting of financial times series. Additionally, I compare existing forecasting methods using the SOM with those for which a framework has been developed and which have not been applied in a forecasting context. I then compare these methods with the well known ARIMA method of time series forecasting. The second objective of this thesis is to demonstrate the self-organizing map’s ability to cluster data vectors as it was originally developed as a neural network approach to clustering. Specifically I will demonstrate its clustering abilities on limit order book data and present various visualization methods of its output.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.