Screening for psychological distress in healthcare workers using machine learning : a proof of concept


Article
Version acceptée / Accepted Manuscript

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Journal of medical systems

Date de la Conférence

Lieu de la Conférence

Éditeur

Springer

Cycle d'études

Programme

Mots-clés

  • Machine learning
  • Healthcare workers
  • Anxiety
  • Depression
  • Post-traumatic stress disorder

Organisme subventionnaire

Résumé

Résumé

The purpose of this study was to train and test preliminary models using two machine learning algorithms to identify healthcare workers at risk of developing anxiety, depression, and post-traumatic stress disorder. The study included data from a prospective cohort study of 816 healthcare workers collected using a mobile application during the first two waves of COVID-19. Each week, the participants responded to 11 questions and completed three screening questionnaires (one for anxiety, one for depression, and one for post-traumatic stress disorder). Then, the research team selected two questions (out of the 11), which were used with biological sex to identify whether scores on each screening questionnaire would be positive or negative. The analyses involved a fivefold cross-validation to test the accuracy of models based on logistic regression and support vector machines using cross-sectional and cumulative measures. The findings indicated that the models derived from the two questions and biological sex accurately identified screening scores for anxiety, depression, and post-traumatic stress disorders in 70% to 80% of cases. However, the positive predictive value never exceeded 50%, underlining the importance of collecting more data to train better models. Our proof of concept demonstrates the feasibility of using machine learning to develop novel models to screen for psychological distress in at-risk healthcare workers. Developing models with fewer questions may reduce burdens of active monitoring in practical settings by decreasing the weekly assessment duration.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.