Game theoretical characterization of the multi-agent network expansion game
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Multi-agent network expansion
- Algorithmic game theory
- Équilibres de Nash
- Programmation en nombres entiers mixtes
- Inégalités valides
- Flux maximum
- Operations research
- Nash Equilibria
- Mixed-integer programming
- Valid inequalities
- Maximum flow
- Théorie algorithmique des jeux
- Expansion de réseau multi-agent
- Recherche opérationnelle
Organisme subventionnaire
Résumé
Résumé
Dans les chaînes d’approvisionnement, les producteurs font souvent appel à des entreprises de transport pour livrer leurs marchandises. Cela peut entraîner une concurrence entre les transporteurs qui cherchent à maximiser leurs revenus individuels en desservant un produc- teur. Dans ce travail, nous considérons de telles situations où aucun transporteur ne peut garantir la livraison de la source à la destination en raison de son activité dans une région restreinte (par exemple, une province) ou de la flotte de transport disponible (par exemple, uniquement le transport aérien), pour ne citer que quelques exemples. La concurrence est donc liée à l’expansion de la capacité de transport des transporteurs.
Le problème décrit ci-dessus motive l’étude du jeu d’expansion de réseau multi-agent joué sur un réseau appartenant à de multiples transporteurs qui choisissent la capacité de leurs arcs. Simultanément, un client cherche à maximiser le flux qui passe par le réseau en décidant de la politique de partage qui récompense chacun des transporteurs. Le but est de déterminer un équilibre de Nash pour le jeu, en d’autres termes, la strategie d’extension de capacité et de partage la plus rationnelle pour les transporteurs et le client, respectivement. Nous rappelons la formulation basée sur les arcs proposée dans la littérature, dont la solution est l’équilibre de Nash avec le plus grand flux, et nous identifions ses limites. Ensuite, nous formalisons le concept de chemin profitable croissant et nous montrons son utilisation pour établir les conditions nécessaires et suffisantes pour qu’un vecteur de stratégies soit un équilibre de Nash. Ceci nous conduit à la nouvelle formulation basée sur le chemin. Enfin, nous proposons un renforcement du modèle basé sur les arcs et une formulation hybride arc- chemin. Nos résultats expérimentaux soutiennent la valeur des nouvelles inégalités valides obtenues à partir de notre caractérisation des équilibres de Nash avec des chemins croissants rentables. Nous concluons ce travail avec les futures directions de recherche pavées par les contributions de cette thèse.
In supply chains, manufacturers often use transportation companies to deliver their goods. This can lead to competition among carriers seeking to maximize their individual revenues by serving a manufacturer. In this work, we consider such situations where no single carrier can guarantee delivery from source to destination due to its operation in a restricted region (e.g., a province) or the available transportation fleet (e.g., only air transportation), to name a few examples. Therefore, competition is linked to the expansion of transportation capacity by carriers. The problem described above motivates the study of the multi-agent network expansion game played over a network owned by multiple transporters who choose their arcs’ capacity. Simultaneously, a customer seeks to maximize the flow that goes through the network by deciding the sharing policy rewarding each of the transporters. The goal is to determine a Nash equilibrium for the game, in simple words, the most rational capacity expansion and sharing policy for the transporters and the customer, respectively. We recap the arc-based formulation proposed in literature, whose solution is the Nash equilibirum with the largest flow, and we identify its limitations. Then, we formalize the concept of profitable increasing path and we show its use to establish necessary and sufficient conditions for a vector of strategies to be a Nash equilibrium. This lead us to the first path-based formulation. Finally, we propose a strengthening for the arc-based model and a hybrid arc-path formulation. Our experimental results support the value of the new valid inequalities obtained from our characterization of Nash equilibria with profitable increasing paths. We conclude this work with the future research directions paved by the contributions of this thesis.
In supply chains, manufacturers often use transportation companies to deliver their goods. This can lead to competition among carriers seeking to maximize their individual revenues by serving a manufacturer. In this work, we consider such situations where no single carrier can guarantee delivery from source to destination due to its operation in a restricted region (e.g., a province) or the available transportation fleet (e.g., only air transportation), to name a few examples. Therefore, competition is linked to the expansion of transportation capacity by carriers. The problem described above motivates the study of the multi-agent network expansion game played over a network owned by multiple transporters who choose their arcs’ capacity. Simultaneously, a customer seeks to maximize the flow that goes through the network by deciding the sharing policy rewarding each of the transporters. The goal is to determine a Nash equilibrium for the game, in simple words, the most rational capacity expansion and sharing policy for the transporters and the customer, respectively. We recap the arc-based formulation proposed in literature, whose solution is the Nash equilibirum with the largest flow, and we identify its limitations. Then, we formalize the concept of profitable increasing path and we show its use to establish necessary and sufficient conditions for a vector of strategies to be a Nash equilibrium. This lead us to the first path-based formulation. Finally, we propose a strengthening for the arc-based model and a hybrid arc-path formulation. Our experimental results support the value of the new valid inequalities obtained from our characterization of Nash equilibria with profitable increasing paths. We conclude this work with the future research directions paved by the contributions of this thesis.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.