Prédiction et génération de données structurées à l'aide de réseaux de neurones et de décisions discrètes


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Maîtrise / Master's

Programme

Affiliation

Mots-clés

  • Intelligence artificielle
  • Apprentissage automatique
  • Recurrent neural networks
  • Convolutional neural networks
  • Generative Adversarial networks
  • Discrete decisions
  • Apprentissage profond
  • Réseaux de neurones récurrents
  • Réseaux de neurones à convolution
  • Réseaux antagonistes génératifs
  • Décisions discrètes
  • Artificial intelligence
  • Machine learning
  • Deep learning

Organisme subventionnaire

Résumé

Résumé

L’apprentissage profond, une sous-discipline de l’apprentissage automatique, est de plus en plus utilisé dans une multitude de domaines, dont le traitement du langage naturel. Toutefois, plusieurs problèmes restent ouverts, notamment la prédiction de longues séquences et la génération de langues naturelles. Dans le mémoire qui suit, nous présentons deux modèles travaillant sur ces problèmes. Dans le chapitre 1, nous incorporons un système de planification à l’intérieur des modèles séquence-à-séquence. Pour ce faire, le modèle détermine à l’avance l’alignement entre la séquence d’entrée et de sortie. Nous montrons que ce mécanisme améliore l’alignement à l’intérieur des modèles, converge plus rapidement et nécessite moins de paramètres. Nous montrons également des gains de performance en traduction automatique, en génération de questions ainsi que la découverte de circuits eulériens dans des graphes. Dans le chapitre 2, nous appliquons des réseaux antagonistes génératifs aux langues naturelles, une tâche compliquée par la nature discrète du domaine. Le modèle est entraîné de manière purement non supervisée et n’utilise aucune estimation de gradients. Nous montrons des résultats en modélisation de la langue, en génération de grammaires non contextuelles et génération conditionnelle de phrases.
Deep learning, a subdiscipline of machine learning, is used throughout multiple domains, including natural language processing. However, in the field multiple problems remain open, notably the prediction of long sequences and the generation of natural languages. In the following thesis, we present two models that work toward solving both of these problems. In chapter 1, we add a planning mechanism to sequence-to-sequence models. The mech- anism consists of establishing ahead of time the alignment between the input and output sequence. We show that this improves the alignment, help the model to converge faster, and necessitate fewer parameters. We also show performance gain in neural machine translation, questions generation, and the algorithmic task of finding Eulerian circuits in graphs. In chapter 2, we tackle the language generation task using generative adversarial net- works. A non-trivial problem considering the discrete nature of the output space. The model is trained using only an adversarial loss and without any gradient estimation. We show results on language modeling, context-free grammar generation, and conditional sen- tence generation.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.