Differential operators on sketches via alpha contours


Article
Version acceptée / Accepted Manuscript

Date de publication

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

ACM Transactions on graphics

Date de la Conférence

Lieu de la Conférence

Éditeur

Association for Computing Machinery

Cycle d'études

Programme

Mots-clés

  • Computing methodologies
  • Parametric curve and surface models
  • Shape analysis
  • Vector graphics
  • Sketch processing
  • Differential operators

Organisme subventionnaire

Résumé

Résumé

A vector sketch is a popular and natural geometry representation depicting a 2D shape. When viewed from afar, the disconnected vector strokes of a sketch and the empty space around them visually merge into positive space and negative space, respectively. Positive and negative spaces are the key elements in the composition of a sketch and define what we perceive as the shape. Nevertheless, the notion of positive or negative space is mathematically ambiguous: While the strokes unambiguously indicate the interior or boundary of a 2D shape, the empty space may or may not belong to the shape’s exterior. For standard discrete geometry representations, such as meshes or point clouds, some of the most robust pipelines rely on discretizations of differential operators, such as Laplace-Beltrami. Such discretizations are not available for vector sketches; defining them may enable numerous applications of classical methods on vector sketches. However, to do so, one needs to define the positive space of a vector sketch, or the sketch shape. Even though extracting this 2D sketch shape is mathematically ambiguous, we propose a robust algorithm, Alpha Contours, constructing its conservative estimate: a 2D shape containing all the input strokes, which lie in its interior or on its boundary, and aligning tightly to a sketch. This allows us to define popular differential operators on vector sketches, such as Laplacian and Steklov operators. We demonstrate that our construction enables robust tools for vector sketches, such as As-Rigid-As-Possible sketch deformation and functional maps between sketches, as well as solving partial differential equations on a vector sketch.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.