Estimation utilisant les polynômes de Bernstein
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Maîtrise / Master's
Programme
Affiliation
Mots-clés
- Estimation non paramétrique
- propriétés asymptotiques
- processus empiriques
- convergence presque sûre
- étude par simulation
- Non-parametric density estimator
- asymptotic properties
- empirical processes
- almost sure limits
- simulation study
Organisme subventionnaire
Résumé
Résumé
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
This thesis focuses on the presentation of the Bernstein estimators which are recent alternatives to conventional estimators of the distribution function and density. More precisely, we study their various properties and compare them with the empirical distribution function and the kernel method estimators. We determine an asymptotic expression of the first two moments of the Bernstein estimator for the distribution function. As the conventional estimators, we show that this estimator satisfies the Chung-Smirnov property under conditions. We then show that the Bernstein estimator is better than the empirical distribution function in terms of mean squared error. We are interested in the asymptotic behavior of Bernstein estimators, for a suitable choice of the degree of the polynomial, we show that the Bernstein estimators are asymptotically normal. Numerical studies on some classical distributions confirm that the Bernstein estimators may be preferable to conventional estimators.
This thesis focuses on the presentation of the Bernstein estimators which are recent alternatives to conventional estimators of the distribution function and density. More precisely, we study their various properties and compare them with the empirical distribution function and the kernel method estimators. We determine an asymptotic expression of the first two moments of the Bernstein estimator for the distribution function. As the conventional estimators, we show that this estimator satisfies the Chung-Smirnov property under conditions. We then show that the Bernstein estimator is better than the empirical distribution function in terms of mean squared error. We are interested in the asymptotic behavior of Bernstein estimators, for a suitable choice of the degree of the polynomial, we show that the Bernstein estimators are asymptotically normal. Numerical studies on some classical distributions confirm that the Bernstein estimators may be preferable to conventional estimators.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.