Modules réflexifs de rang 1 sur les variétés nilpotentes
Thèse ou mémoire / Thesis or Dissertation
Date de publication
Autrices et auteurs
Identifiant ORCID de l’auteur
Contributrices et contributeurs
Direction de recherche
Publié dans
Date de la Conférence
Lieu de la Conférence
Éditeur
Cycle d'études
Doctorat / Doctoral
Programme
Affiliation
Mots-clés
- variété nilpotente normale
- groupe des classes
- cohomology of line bundles
- cotangent bundle of a flag variety
- module réflexif
- théorème d'annulation
- cohomologie de fibrés en droites
- fibré cotangent d'une variété de drapeaux
- normal nilpotent variety
- class group
- reflexive module
- vanishing theorem
Organisme subventionnaire
Résumé
Résumé
Soit G un groupe algébrique linéaire complexe, simple, connexe et simplement connexe.
Étant donné un sous-groupe parabolique P G et un idéal nilpotent n p, il existe un
morphisme propre d’effondrement G x P n = Gn. Il se factorise en une variété affine et
normale N := SpecC [G P n] que nous appelons variété nilpotente.
Sous l’hypothèse que l’effondrement soit génériquement fini, nous décrivons le groupe
des classes de diviseurs équivariants de N à l’aide de C[N]-modules réflexifs équivariants
de rang 1. Un représentant de chaque classe peut être choisi comme les sections globales
d’un fibré en droite sur G x P' n' où G x P' n' = Gn' est un effondrement possiblement
distinct qui se factorise à travers la même variété nilpotente.
Dans le cas où le groupe G est de type A ou dans le cas d’un effondrement provenant de
certains diagrammes de Dynkin pondérés spécifiques, nous démontrons que les représentants
proviennent de poids qui peuvent être choisis comme dominants. Dans ce cas, nous
démontrons que si le module représente un élément torsion du groupe des classes, alors il
est Cohen–Macaulay. Nous en déduisons un théorème d’annulation en cohomologie.
Let G be a simple, connected, simply connected complex linear algebraic group with parabolic subgroup P G and nilpotent ideal n p. The proper collapsing map G x P n = Gn factors through the normal affine variety N := SpecC [G x P n] which is called a nilpotent variety. Assuming the collapsing is generically finite, we describe the equivariant divisor class group of N using rank 1 reflexive equivariant C[N]-modules. A representative of each class may be chosen as global sections of a line bundle over G x P' n' where G x P' n' = Gn' is a possibly distinct collapsing that factors through the same nilpotent variety. Assuming either G is of type A or the collapsing comes from specific weighted Dynkin diagrams,we showthat each representative arise from a weight that may be chosen dominant. Moreover, if the module represents a torsion element within the class group, then it is Cohen– Macaulay and we deduce a cohomological vanishing theorem.
Let G be a simple, connected, simply connected complex linear algebraic group with parabolic subgroup P G and nilpotent ideal n p. The proper collapsing map G x P n = Gn factors through the normal affine variety N := SpecC [G x P n] which is called a nilpotent variety. Assuming the collapsing is generically finite, we describe the equivariant divisor class group of N using rank 1 reflexive equivariant C[N]-modules. A representative of each class may be chosen as global sections of a line bundle over G x P' n' where G x P' n' = Gn' is a possibly distinct collapsing that factors through the same nilpotent variety. Assuming either G is of type A or the collapsing comes from specific weighted Dynkin diagrams,we showthat each representative arise from a weight that may be chosen dominant. Moreover, if the module represents a torsion element within the class group, then it is Cohen– Macaulay and we deduce a cohomological vanishing theorem.
Table des matières
Notes
Notes
Autre version linguistique
Ensemble de données lié
Licence
Approbation
Évaluation
Complété par
Référencé par
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.