Modules réflexifs de rang 1 sur les variétés nilpotentes


Thèse ou mémoire / Thesis or Dissertation

Date de publication

Autrices et auteurs

Identifiant ORCID de l’auteur

Contributrices et contributeurs

Direction de recherche

Publié dans

Date de la Conférence

Lieu de la Conférence

Éditeur

Cycle d'études

Doctorat / Doctoral

Affiliation

Mots-clés

  • variété nilpotente normale
  • groupe des classes
  • cohomology of line bundles
  • cotangent bundle of a flag variety
  • module réflexif
  • théorème d'annulation
  • cohomologie de fibrés en droites
  • fibré cotangent d'une variété de drapeaux
  • normal nilpotent variety
  • class group
  • reflexive module
  • vanishing theorem

Organisme subventionnaire

Résumé

Résumé

Soit G un groupe algébrique linéaire complexe, simple, connexe et simplement connexe. Étant donné un sous-groupe parabolique P G et un idéal nilpotent n p, il existe un morphisme propre d’effondrement G x P n = Gn. Il se factorise en une variété affine et normale N := SpecC [G P n] que nous appelons variété nilpotente. Sous l’hypothèse que l’effondrement soit génériquement fini, nous décrivons le groupe des classes de diviseurs équivariants de N à l’aide de C[N]-modules réflexifs équivariants de rang 1. Un représentant de chaque classe peut être choisi comme les sections globales d’un fibré en droite sur G x P' n' où G x P' n' = Gn' est un effondrement possiblement distinct qui se factorise à travers la même variété nilpotente. Dans le cas où le groupe G est de type A ou dans le cas d’un effondrement provenant de certains diagrammes de Dynkin pondérés spécifiques, nous démontrons que les représentants proviennent de poids qui peuvent être choisis comme dominants. Dans ce cas, nous démontrons que si le module représente un élément torsion du groupe des classes, alors il est Cohen–Macaulay. Nous en déduisons un théorème d’annulation en cohomologie.
Let G be a simple, connected, simply connected complex linear algebraic group with parabolic subgroup P G and nilpotent ideal n p. The proper collapsing map G x P n = Gn factors through the normal affine variety N := SpecC [G x P n] which is called a nilpotent variety. Assuming the collapsing is generically finite, we describe the equivariant divisor class group of N using rank 1 reflexive equivariant C[N]-modules. A representative of each class may be chosen as global sections of a line bundle over G x P' n' where G x P' n' = Gn' is a possibly distinct collapsing that factors through the same nilpotent variety. Assuming either G is of type A or the collapsing comes from specific weighted Dynkin diagrams,we showthat each representative arise from a weight that may be chosen dominant. Moreover, if the module represents a torsion element within the class group, then it is Cohen– Macaulay and we deduce a cohomological vanishing theorem.

Table des matières

Notes

Notes

Autre version linguistique

Ensemble de données lié

Licence

Approbation

Évaluation

Complété par

Référencé par

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Sauf si le document est diffusé sous une licence Creative Commons, il ne peut être utilisé que dans le cadre d'une utilisation équitable et non commerciale comme le prévoit la Loi (i.e. à des fins d'étude privée ou de recherche, de critique ou de compte-rendu). Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.